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It is the task of this paper to generalise certain results of [1] con-
cerning the structure of surfaces. The motivation is in part to extend
the solution [2] of the Plateau problem from the case of Hausdorff
spherical measure to other forms of “area,” particularly Hausdorff
convex measure.

We consider the class of surfaces defined in [2]. LCH,-1(4) and
S is a surface with boundary DL. We write u(L) for the minimum
area A™(S—A4) of surfaces with boundary DL. We also write u(4)
for p(Hn-1(4)).

Let S(P, r) denote the solid sphere of centre P and radius 7, and
denote its surface by s(P, r). Let T be the set of points of S°=S—4
where S is (A™, m)-restricted [3] and

wG(B, 1)S) 0
rﬂ'n

At these points we say there is an approximate tangential plane. Let
AS) = lim inf D u(S(@G: — G2)

e—0 Q¢
where €. is the class of sets of nonoverlapping open sets G; of diam-
eter less than e not meeting 4 and such that A»(S°— > .G,) =0.
We shall show that:

THEOREM.
AT = A(S).

As regards applying this to the Plateau problem for Hausdorff con-
vex measure, [A™, it suffices to note that for a surface minimising
Hausdorff spherical measure, A™, the two measures are equal and in
any case

Am(SO) = cAm(SO) = cAm(T) = Am(T) = 2[(5) 2 ,U,(L)_

It is perhaps worth noting that %(S) need not be as great as u(4).

In order to prove that A”(T) =U(S) it suffices to cover nearly all of
S%— T with small nonoverlapping open G; such that Z,U.(S(a,-—Gi))
is small. We do so by applying the Vitale general covering principle
[4] in two stages. At the first stage consider those points of S° which
are restricted but not in 7. By definition

213



214 E. R. REIFENBERG [May

P, n)S AmSS(P
WeP,AS) AR
rm ’m

so that there exist arbitrarily small spheres on which

/.t{ s(P, r)S } .
A™SS(P, r) )

At the second stage we must consider the unrestricted points. To do
so we need the full power of the main result of [3]; the “projection
theorem.”

According to this any m-set E can be divided into two parts the
restricted part Eg and the unrestricted part E, and whereas the pro-
jection of Eg onto almost any m plane is a set of positive measure
the projection of E, onto almost any m plane is a set of measure zero.

In n-dimensional Euclidean space let E(@, k) be the part of E on
the (n—1)-plane at distance % from the origin and normal to the
direction 6. Write R,E=A"Eg. Then:

LeMMA 1. For almost all 6
Ra(B) 2 [ Rus(E0, W),

We can split E up into its restricted and unrestricted parts. For a
restricted set [2]

Ra(B) = An(B) 2 [ n1E@ Wik 2 [ RasBG,

and so we can confine ourself to the case of an unrestricted set E
when we must prove that

(M f Ru—1(E(8, )dh = 0.
Let II,, be an m-plane through the origin, 8 a vector in II,, and % a

real variable on 6. Write (@, I, k) for the (m —1)-dimensional Haus-
dorff spherical measure of the projection of E(@, &) onto IL,,.

f f(6, ILn, B)dk = A™ (Projection onto II,, of E)
and therefore for almost all II,, the left-hand side is zero whenever

0 CI1I...
Thus taking a fixed plane II3_,, .,
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f , b dll,, f £(8, M, K)dk = 0.
ocI 1,06

n—m-+1

Hence for almost all § CII5_,,,,

f d1l,, f £(6, T, B)dh = 0
1,06

i.e.

f dh f XL, f(0, T, B) = O
m,,00

so that for almost all 4: f(, IL,, ) =0 for almost all I1,, D8, which
implies Rn—1E(8, k) =0. This is true for almost all § CIIj,_,,,, and hence
for almost all 6.

Thus for almost all § (1) holds and the lemma follows.

LemwMA 2. If T is an (m —1) dimensional boundary of diameter d and
finite measure then

) < du(r)

Choose a nonoverlapping set of open G; of diameter less than €>0
such that

@ S (@ — GIT) S AT + ¢

and
3) Am—t (P - i G,-) = 0.

Let S; be a surface of diameter less than e with boundary
DHn 2((Gi—G)T) and of measure u((G;—G;)T'). Then for any N by
[2]

N v N
u(T) = M(P -2 G+ S;) + > u(S;+ G
1 1 1
whence for large N (3) and Lemma 7 of [2] give

dAUT) + 20 e 24T
(?I(;+ )+ A™X(T)

m

uw() =

from which the lemma follows by letting e—0.
I now proceed by induction. Any closed set of finite linear measure
can [5] be divided into a totally disconnected set plus a denumerable
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set of arcwise connected sets; so that our main theorem holds for
m=1,

Suppose then that for (m —1)-dimensional surfaces A»1(T) = A(S)
so that by Lemma 2

@) u(ry = Er )

Take G an open set containing SJ the unrestricted part of S° and
such that

(5) Rn(GS") < Ru(SY) + ¢ = e

If PES) then by virtue of Lemma 1 we can find arbitrarily small
cubes A(k) CG with side 2k and centre P such that if 8(%) denotes the
surface of A(k) then

ZR'”(“ZA—(@—) 2 Rn-1(S8(hs))
and hy>hy>hy/2.
By (4) above
2
©) u(SB(he)) < ;" Ra(SA(h)).

By Vitale's theorem [4] we can now find a covering almost all of S%
by a set ¢ of nonoverlapping A(ks). The corresponding A(k) can be
divided into a bounded set of classes of nonoverlapping cubes (cf.
[4]) and each A(k) CG; consequently by (5) and (6)

2 u(Sd(ha))
é

is small and the theorem follows.
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