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I t is the task of this paper to generalise certain results of [ l ] con­
cerning the structure of surfaces. The motivation is in part to extend 
the solution [2] of the Plateau problem from the case of Hausdorff 
spherical measure to other forms of "area," particularly Hausdorff 
convex measure. 

We consider the class of surfaces defined in [2]. L C ^ m - i ( ^ ) and 
5 is a surface with boundary Z)L. We write JU(L) for the minimum 
area Am(S — A) of surfaces with boundary 3 L . We also write fx(A) 
for p(Hn^M)). 

Let S(P, r) denote the solid sphere of centre P and radius r, and 
denote its surface by s(P, r). Let T be the set of points of S° = S— A 
where 5 is (Am, m) -restricted [3] and 

M(*(P, r)S) 
H»0. 

At these points we say there is an approximate tangential plane. Let 

21(5) = lim inf £ M(5(S< - &)) 

where Q€ is the class of sets of nonoverlapping open sets d of diam­
eter less than e not meeting A and such that Am(5° — ^Gi) = 0. 

We shall show tha t : 

THEOREM. 

AmT = «(S). 

As regards applying this to the Plateau problem for Hausdorff con­
vex measure, cAm, it suffices to note that for a surface minimising 
Hausdorff spherical measure, A™, the two measures are equal and in 
any case 

A*(S°) ^ cAm(S°) ^ cA™(r) = Am(T) = «(S) ^ M(L). 

I t is perhaps worth noting that 81(5) need not be as great as n(A). 
In order to prove that Am(T) = 21(5) it suffices to cover nearly all of 

5°— T with small nonoverlapping open d such that ]CM(5(G< — Gt)) 
is small. We do so by applying the Vitale general covering principle 
[4] in two stages. At the first stage consider those points of 5° which 
are restricted but not in T. By definition 
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n(s(P,r)S) A™SS(P,r) 
> O b u t 1-> O 

yfn yin 

so that there exist arbitrarily small spheres on which 

j*{j(P,f)S} 

AmSS(P, r) 

At the second stage we must consider the unrestricted points. To do 
so we need the full power of the main result of [3]; the "projection 
theorem." 

According to this any ra-set E can be divided into two parts the 
restricted part ER and the unrestricted part Eu and whereas the pro­
jection of ER onto almost any m plane is a set of positive measure 
the projection of Eu onto almost any m plane is a set of measure zero. 

In w-dimensional Euclidean space let E(0, h) be the part of E on 
the (n — 1) -plane a t distance h from the origin and normal to the 
direction 0. Write RmE = AmER. Then: 

LEMMA 1. For almost all 0 

Rm(E) è ƒ Rm-i(E{e, h))dh. 

We can split E up into its restricted and unrestricted parts. For a 
restricted set [2] 

Rm(E) = Am(E) è f k™-lE(6, h)dh è f Rm-iE(d, h)dh, 

and so we can confine ourself to the case of an unrestricted set E 
when we must prove that 

(1) ƒ Rm-i(E(6, h))dh = 0. 

Let TLm be an m-plane through the origin, 6 a vector in Hm and h a 
real variable on 0. Write/(0, IIW, h) for the (w — 1)-dimensional Haus-
dorff spherical measure of the projection of £(0, h) onto IIw. 

ƒ /(0, nm , h)dh = Am (Projection onto TLm of E) 

and therefore for almost all Hm the left-hand side is zero whenever 

0cnm. 
Thus taking a fixed plane H%„m+i 
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f de f <mm f ƒ(», nm, h)dh = o. 
J « c n j ^ + 1 J nmDd J 

Hence for almost all 6CJRn-m+i 

f dUm f ƒ(*, ILm, h)dh = 0 

i.e. 

f dh f dïlmf(6, Ilm h) = 0 

so that for almost all h:f(0, IIm, h)=0 for almost all IImD0, which 
implies Rm-iE(0, h) = 0. This is true for almost all 0 C n J . w + 1 and hence 
for almost all 0. 

Thus for almost all 0 (1) holds and the lemma follows. 

LEMMA 2. If T is an (m — 1) dimensional boundary of diameter d and 
finite measure then 

/*(r) ^ 

Choose a nonoverlapping set of open G% of diameter less than e > 0 
such that 

(2) fXfo-GdlOSaW + e 
l 

and 

(3) A»"1 ( r - Z G ^ = 0. 

Let S( be a surface of diameter less than e with boundary 
DHm^((Gi-Gi)T) and of measure /t((S,—G,-)r). Then for any iV by 
[2] 

„(r) ^ M ( r - E G< + E ^ ) + £ M(5< + &r) 

whence for large iV (3) and Lemma 7 of [2] give 

M(r)â 
m m 

from which the lemma follows by letting c—»0. 
I now proceed by induction. Any closed set of finite linear measure 

can [5] be divided into a totally disconnected set plus a denumerable 
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set of arcwise connected sets; so that our main theorem holds for 
ra = 1. 

Suppose then that for (ra —1)-dimensional surfaces A.m~l(T)=%(S) 
so that by Lemma 2 

(4) M(r) g — • 
m 

Take G an open set containing 5£ the unrestricted part of 5° and 
such that 

(5) Rm(GS°) ^ Rm(Sl) + € = €. 

If PÇzSl then by virtue of Lemma 1 we can find arbitrarily small 
cubes A(h) CG with side Ih and centre P such that if 8(h) denotes the 
surface of A(h) then 

2.Rw(SA(Ai)) 

h 
and h\>hi>hi/2. 

By (4) above 

2n 
(6) M(58(*0) ^ — * * ( 5 A ( A I ) ) . 

By Vitale's theorem [4] we can now find a covering almost all of 5*2 
by a set <t> of nonoverlapping A(fe2). The corresponding A(fei) can be 
divided into a bounded set of classes of nonoverlapping cubes (cf. 
[4]) and each A(Ai) QG; consequently by (5) and (6) 

E M(58(*2» 

is small and the theorem follows. 
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