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A polynomial f(x) with coefficients in the finite field GF(q) is
called a permutation polynomial if the numbers f(a), where e EGF(q)
are a permutation of the @’s. An equivalent statement is that the
equation

¢y Jx) = a

is solvable in GF(q) for every a in GF(g). A number of classes of
permutation polynomials have been given by Dickson [1]; see also
Rédéi [3].

In the present note we construct some permutation polynomials
that seem to be new. Let ¢g=2m+41 and put

(2 f(x) = amtt 4 ax.

We define

3 Y(x) = am,

so that ¥(x) = —1, 41 or 0 according as x is a nonzero square, a non-
square or zero in GF(g). Thus (2) may be written as

@ f(®) = x(a + ¥(x)).

We shall show that for proper choice of @, the polynomial f(x) is
a permutation polynomial. We assume that a?7#1; then x=0 is the
only solution in the field of the equation f(x) =0. Now suppose (i) f(x)
=f(y), ¥(x) =¢(y). It follows at once from (4) that x=y. Next sup-
pose (i) f(x) =f(3), ¥(x) = —¢(3). Then (4) implies

Q) ¢<a+1)=—1.

a—1
If we take
2+ 1
(6) a=c2_1;

where ¢?7 41 or 0 but otherwise is an arbitrary square of the field,
it is evident that (5) is not satisfied. For ¢=7 such a choice of ¢? is
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possible. Hence f(x) is a permutation polynomial for ¢=7 and a de-
fined by (6).

We show next that f(x) is not a permutation polynomial for GF(g"),
where #> 1. For 7 even this is evident since

¢ —=1=0 (modm + 1).
Replacing 7 by 2r4-1, put
) ¥+ = k(m + 1) + m.
Then expanding

(f(x))etm=1 = (gm+1  gy)ktm—1

and reducing the result (mod ¥ —x), we find that the coefficient
of @ —1 is equal to
k+m—1
€©)] ( ) a1,
m—1

Since by (7) k=1 (mod ¢), it follows that the binomial coefficient in
(8) is congruent to 1 (mod p). Therefore f(x) is not a permutation
polynomial for GF(g?+1).

We may state

THEOREM 1. The polynomial
f(x) = am+tl |- ax (¢g=2m+1)

with a defined by (6) is a permutation polynomial for GF(q) provided
q=17. However it is not a permuiation polynomial for any GF(qr) with
r>1.

We consider next the case ¢=3m-+1 and again put f(x) =x"+1+gx.
It is now convenient to define

) Val@) = am.
Thus for xEGF(q), x50, we have ¥3(x) =1, w or w?, where
Ptot+1=0 (@ € GF(g)).

We assume first that ¢ # —1, —w, —w? If we suppose (i) f(y) =f(x),

Ys(x) =¢s(y), it follows that x=7v. If we suppose (ii) f(x)=f(»),
Ya(y) = w - Pa(x) =wh, it follows that

a+ A
(10) %(a+w)\) -

If we suppose (iii) f(x) =f(y), ¥3:(y) =w?, ¥3(x) =w?\ we get
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a+ A\
11 = 2.
(1) ‘I’a(a - M) o
Hence if we can choose a so that
(12) Yi(a + 1) = ¢s(a + ) = ¥3(a + »?),

both (10) and (11) will be contradicted.
Now (12) holds if and only if

(13) a4+ w=>0a+ 1), e+ w?=ca+ 1),
where b, cEGF(q), b35#1, ¢*#1. Eliminating a¢ we get
(14) b3 4 we 4+ »? = 0.

Conversely if (14) is satisfied we get (13). By a theorem of Hurwitz
which can be extended without difficulty to finite fields the number
of solutions of (14) is asymptotic to ¢. This proves

THEOREM 2. For q=3m-1 sufficiently large it is possible to choose
aEGF(q) so that f(x)=xmt14-ax is a permutation polynomial for
GF(9).

It is not evident whether the second half of Theorem 1 can be
carried over to this case.
Finally we state

THEOREM. Let k be a fixed integer =2 and g=km-+1. Then there
exists a constant Ny and a number a €GF(q) such that

f(x) = amtl +ax
is a permutation polynomial for GF(q) provided ¢> N,.

The proof makes use of a theorem of Lang and Weil concerning the
number of solutions of system of equations over a finite field [2].
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