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A polynomial f(x) with coefficients in the finite field GF(q) is 
called a permutation polynomial if the numbers/(a) , where aÇzGF(q) 
are a permutation of the a's. An equivalent statement is that the 
equation 

(1) ƒ(*) = a 

is solvable in GF(q) for every a in GF(q). A number of classes of 
permutation polynomials have been given by Dickson [ l ] ; see also 
Rédéi [3]. 

In the present note we construct some permutation polynomials 
that seem to be new. Let q = 2m + l and put 

(2) f(x) = xm+1 + ax. 

We define 

(3) *(*) = *», 

so that \p(x) == — 1, + 1 or 0 according as x is a nonzero square, a non-
square or zero in GF(q). Thus (2) may be written as 

(4) ƒ(*) = *(<* + *(*)). 

We shall show that for proper choice of a, the polynomial f(x) is 
a permutation polynomial. We assume that a2 7*1; then x = 0 is the 
only solution in the field of the equation ƒ (x) = 0. Now suppose (i) f(x) 
s=f(y), ^{x) =^ (^ ) . I t follows at once from (4) that x = y. Next sup­
pose (ii) fix) =f(y), ypix) = — i/(y). Then (4) implies 

(5) 

If we take 

•(£*) 
c 2 + 1 

(6) « - I — T ' 
C2 ~ 1 

where c V ± l or 0 but otherwise is an arbitrary square of the field, 
it is evident that (5) is not satisfied. For q*z7 such a choice of c2 is 
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possible. Hence fix) is a permutation polynomial f or q g: 7 and a de­
fined by (6). 

We show next that ƒ (x) is not a permutation polynomial for GF(qr)t 

where r> 1. For r even this is evident since 

q2 — 1 == 0 (mod w + 1). 

Replacing r by 2r + l, put 

(7) q2r+1 = £(*» + 1) + » . 

Then expanding 

(/(^))/b+m"1 = (#m+1 + ax)h+m~x 

and reducing the result (mod x l—x), we find that the coefficient 
of tfg2rfl — 1 is equal to 

(8) 
V i n - 1 / 

Since by (7) k = 1 (mod g), it follows that the binomial coefficient in 
(8) is congruent to 1 (mod p). Therefore ƒ(x) is not a permutation 
polynomial for GF(q2r+l). 

We may state 

THEOREM 1. The polynomial 

f(x) = tfw+1 + <*# (î = 1m + 1) 

wi/ft a defined by (6) is a permutation polynomial for GFiq) provided 
q^7. However it is not a permutation polynomial f or any GFiqr) with 
r>l. 

We consider next the case q~Zm-\-\ and again put fix) = x m + 1 + a # . 
I t is now convenient to define 

(9) fa(x) = %m» 

Thus for xÇzGFiq), XT^O, we have faix) — 1, co or co2, where 

o,2 + co+ 1 = 0 iuEGFiq)). 

We assume first tha t a9^ — 1, -co, -co2. If we suppose (i) f(y) =ƒ(#), 
ypzix)—ipziy), it follows that # = y. If we suppose (ii) f(x)~f(y), 
fa(y) =wfa(x) = coX, it follows that 

(10) ^ 3 ( _ — - W . 

If we suppose (iii) fix) =f(y), i/̂ Cy) = co2, ^s(#) =co2X we get 
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Hence if we can choose a so that 

(12) *,(a + 1) = ^3(a + a>) = *,(a + o>2), 

both (10) and (11) will be contradicted. 
Now (12) holds if and only if 

(13) a + œ = bz(a + 1 ) , a + co2 = c3(a + 1), 

where b, c(E:GF(q)f bzj*l, c 3 ^ l . Eliminating a we get 

(14) i 3 + a*3 + w2 = 0. 

Conversely if (14) is satisfied we get (13). By a theorem of Hurwitz 
which can be extended without difficulty to finite fields the number 
of solutions of (14) is asymptotic to q. This proves 

THEOREM 2. For q = 3m + l sufficiently large it is possible to choose 
aÇzGF{q) so that f(x)—xm+l+ax is a permutation polynomial for 
GF(q). 

I t is not evident whether the second half of Theorem 1 can be 
carried over to this case. 

Finally we state 

THEOREM. Let k be a fixed integer ?>2 and q~km + l. Then there 
exists a constant Nk and a number aÇ~GF(q) such that 

f(x) = xm+1 +ax 

is a permutation polynomial f or GF(q) provided q>Nk. 

The proof makes use of a theorem of Lang and Weil concerning the 
number of solutions of system of equations over a finite field [2], 
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