RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

KENNZEICHNUNG Γ-PRIMER GRAPHEN

BY H. A. JUNG

Communicated by Edwin Moise, March 1, 1961

Es sei ein endlicher Graph $G = E \cup K$ gegeben. Für p, $p' \in E$ bedeute $\gamma(p, p)$ die doppelte Zahl der Schlingen an p, $\gamma(p, p')$ für $p \neq p'$ die Zahl der Kanten mit den Endpunkten p und p', und es sei $\gamma(p, E') = \sum_{p' \in E'} \gamma(p, p')$ $(E' \subseteq E)$. Schließlich werde für $E' \subseteq E$ definiert: $G(E') = E' \cup K'$, wobei K' die Menge der Kanten bedeute, deren Endpunkte beide in E' liegen.

Auf E sei eine ganzzahlige, nicht negative Funktion Γ gegeben. Man kann dann die Frage stellen, ob ein Untergraph $G' = E \cup K'$ mit $K' \subseteq K$ (Faktor) existiert mit $\gamma'(p, E) = \Gamma(p)$ für jedes $p \in E$ (wobei das für G' bestimmte γ zur Unterscheidung mit γ' bezeichnet ist). Man kann diese Frage zurückführen auf die Kennzeichnung maximal- Γ -primer Graphen.

Zunächst einige Begriffe:1

- (a) G heiße zwischen p und p' Γ -vollständig (kurz Γ_v), wenn $\gamma(p, p') \ge \min(\Gamma(p), \Gamma(p'))$ für $p \ne p'$ bzw. $\gamma(p, p)/2 \ge [\Gamma(p)/2]$ für p = p' gilt. Andernfals heiße G zwischen p und p' Γ -unvollständig (kurz Γ_{uv}), 2
- (b) $p \in E$ heiße Γ -vollständig bzw. Γ -unvollständig, wenn G zwischen p under jedem $p' \in E\Gamma_{\nu}$ bzw. zwischen p und jedem nicht Γ -vollständigen $p' \in E\Gamma_{u\nu}$ ist,
- (c) E_v bzw. E_{uv} sei die Menge aller Γ -vollständigen bzw. aller Γ -unvollständigen Ecken von G,
- (d) G heiße Γ -teilbar bzw. Γ -prim, wenn G (mindestens) einen bzw. keinen Γ -Faktor hat,
- (e) G heiße maximal- Γ -prim, wenn G Γ -prim, aber $G = E \cup K \cup \{k\}$ für jede (neue) Kante k, sofern G zwischen den Endpunkten von k Γ_{uv} ist, Γ -teilbar ist.

¹ Vgl. K. Wagner, Faktorklassen in Graphen, Math. Ann. Bd. 141 (1960) pp. 49-67, im folgenden kurz mit [1] zitiert.

² Die obigen Bezeichnungen in den Begriffen (a) bis (e) sind aus [1] (jedoch mit teilweise geringen Abweichungen) übernommen.

Offenbar ist G dann und nur dann Γ -prim, wenn G Faktor eines maximal- Γ -primen Graphen ist.

Dann gilt der

SATZ. Ein Graph $G = E \cup K$ ist (in dem nicht trivialen Fall $E \neq E_v$) dann und nur dann maximal- Γ -prim, wenn er die Eigenschaften³ (1), (2), (3) und die beiden folgenden Eigenschaften besitzt:

- (4) $\gamma(p, E_{uv}) \leq \Gamma(p) 1$ für jedes $p \in E E_v$,
- (5) $\sum_{p \in E'} (\gamma(p, E E_v) \Gamma(p)) \leq \sigma(E') 2$ für jedes $E' \subseteq E_{uv}$, wobei $\sigma(E')$ die Zahl der Komponenten von $G(E (E_v \cup E_{uv}))$ bedeutet, die durch mindestens eine Kante mit E' verbunden sind.

Kurze Andeutung des Beweises. Hat \overline{G} einen Γ -Faktor F, so heiße jede Kante $k \in F$ rot, jede andere Kante aus \overline{G} blau. Zunächst sei G maximal- Γ -prim $(E \neq E_v)$. Ist dann $p \in E - E_v$, so gibt es ein p', so daß G zwischen p und p' Γ_{uv} ist. Fügt man zwischen p und p' eine neue Kante k zu G, so existiert ein Γ -Faktor F von $G \cup \{k\}$. Durch Abschätzung der roten Kanten zwischen E_v und E_{uv} erhält man (4). (5) folgt, indem man in $p_0 \in E' \subseteq E_{uv}$ eine neue Schlinge anheftet und die Maximaleigenschaft von G und (4, 5), (4, 8) und (4, 9) aus [1] berücksichtigt.

Umgekehrt erfülle ein Graph die Bedingungen (1)–(5). G ist dann nach Satz 8 aus [1] Γ -prim.k sei eine neue Kante mit den Endpunkten p und p', wobei G zwischen p und p' Γ_{uv} sei. Bei der Konstruktion von F in $G \cup \{k\}$ erreicht man durch die Bedingung (5), daß nach jeder Komponente von $G(E - (E_v \cup E_{uv}))$ eine blaue Kante geführt werden kann, ohne daß E_v oder E_{uv} an roten Kanten "überlastet" wird. (4) verhindert, daß p, falls $p \in E - (E_v \cup E_{uv})$, an roten Kanten überlastet wird, wenn man alle Kanten von E_{uv} nach p rot färbt.

Köln, Germany

Siehe Satz 8 in [1].