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ment should be a brief summary of a paper to be published in full elsewhere, papers 
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A NEW CLASS OF PROBABILITY LIMIT THEOREMS 
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Communicated by J. L. Doob, December 30, 1960 

Suppose that \Xn) is a Markov process with states on the non-
negative real axis and stationary transition probabilities. Define 

(1) pk{x) = £[(XW+1 - Xn)
k\ Xn = x], k = 1, 2, • • • ; 

we assume that for each k> ixk(x) is a bounded function of x. Assume 
also 

(2) lim H2(x) = /3 > 0, lim XJJLI(X) = a > • 
X—>« X-+ 00 2 

We shall say that the process {Xn} is null provided that 

1 n 

(3) lim — £ Pr(X< g M) = 0 

for all finite M. A class of examples satisfying all the conditions im­
posed so far is afforded by Markov chains on the integers with transi­
tion probabilities of the form 

(4) frj+i = — [ l + 4 + ° ( — ) ] > °> PjJ-i « 1 - Pi.M i f3 * 0; 

pQl = 1 — pOO > 0 . 

For such chains (random walks) the null condition is known to hold if 
<x> —1/2 ( = —/3/2). In many (but, so far at least, not all) other cases, 
it can be shown that (3) follows automatically from the other hypoth­
eses. 

For a process {Xn} satisfying the above assumptions, there is an 
analogue of the central-limit theorem: 

1 Partially supported by the National Science Foundation. 
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THEOREM 1. 

(5) lim Pr(Xn g y{n)W) - f * - - —- d*. 

(2^)«/«-»/ir ( — + — J 

2|2«//5g-{*/2^ 

This seems to be a novel result even for random walks (despite the 
extensive recent development of their theory), and was reported in 
[3]. Under very slightly stronger hypotheses, however, much more is 
true. We shall call the process {Xn} uniformly null provided the limit 
(3) holds uniformly in the initial state X0. Again it can be shown that 
this often follows automatically; in particular, it holds for the random 
walks (4). For such processes we can prove 

THEOREM 2. For any t>0, 

(6) lim P r (X M 1 g y(ny* \ X0 = x(n)^) = pt(x, y) 
n—*<» 

exists; the limit pt(x, y) is the transition-probability function for the 
diffusion process with backward equation 

a fi 
(7) ut = — ux H uxx (a and /? are as in (2)) 

x 2 

and with a reflecting barrier {if necessary) at the origin. 

With the aid of these results it is easy to see that there is an 
analogue of the multi-dimensional C.L.T. ; that is, the limit of 

Fr(xinh] ^ yi(nyi\ • • •, x{nth] ^ yk(ny*) 

can be calculated. I t is then natural to seek the appropriate version of 
the Erdös-Kac-Donsker invariance principle [ l ] . Define a continuous 
function x^ by setting 

(n) X{ 
x = 

„1/2 

i 
when t = — y 

n 
(8) xt = when t = — > i £ n, 

n112 n 

and by linear interpolation for other / .Le t C be the space of all con­
tinuous functions xt on [0, l ] with x0 = 0, and endow C with the uni­
form topology. Our main result is 

THEOREM 3. Under the conditions of Theorem 2, 

(9) lim Pr(/(*,(n)) < a) = Pr(/(*<) g a)y 
n—>«o 
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where xt is the diffusion process encountered in Theorem 2, and where 
ƒ( ) is afunctional on C continuous almost everywhere with respect to the 
measure of the process {xt} .2 

From this a large number of interesting limit theorems follow (as from 
Donsker's theorem) by choosing specific functionals ƒ(•)• An im­
portant example for which the limit distribution can be obtained 
more or less explicitly is the case ƒ(xt) = max {xt | 0 S t'è. 1}. 

Theorems 1 and 2 are reminiscent of a general limit theorem in 
Khintchine [2], and Theorem 3 of recent work of Prokhorov [4] and 
Skorohod [S]. None of these general results seem to be directly useful 
in proving the above theorems, however. Our proofs, together with 
additional results and applications, some extensions, and more com­
plete references, will be published separately in the near future. It 
might be remarked that the methods are, for the most part, quite ele­
mentary. Calculations with moments and use of the moment-conver­
gence theorem are prominent in the proofs of Theorems 1 and 2, while 
that of Theorem 3 is analogous in large measure to Donsker's pro­
cedure in [ l ] . 
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f It is understood that the diffusion process satisfies the initial condition #0 = 0 
and that the convergence in (9) is for all a for which the right-hand side is continuous. 


