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THEOREM I.1 The class of functions of hyper degree strictly less than 
0' provides a basis for the predicate (Ea)(x)T{(â(x), af a), and hence 
for all predicates which belong to 2}. 

This theorem settles a problem left open by Kleene in [4]. To 
prove it we observe that Theorem XXVI of [3 ] relativises uniformly 
to an arbitrary function a (see Theorem XXVII of [3]). Thus there 
is a recursive K(u, v) such that : 

(i) (a)(E/3)(x)X(â(x),^(x))L 

(ii) (a)(fi)fieHAia)(x)K(â(x), £(*)), 

where HA (a) denotes the class of functions hyperarithmetic in ce. 
Suppose a satisfies the predicate (Ea)(x)T{(â(x), a, a) ; then, by (i), 

there exist functions a, /3 such that 

(A) (x)Ti(â(x), a, a) & (x)K(&(x), $(x)). 

And we can construct such functions recursively in O (cf. 5.5 (5) of 
[5]). But if OE.HA(a) then also /3GHA(a), which would contradict 
(ii). Hence there is an a of hyperdegree strictly less than 0' such that 
(x)T\(â(x), a, a); and this proves the theorem.2 

By an obvious elaboration of the above argument we can construct, 
recursively in 0, an infinite sequence of non-hyperarithmetic func­
tions ai such tha t a i < a 0 , CX2<OJO^#I, • • • (where bold face type 
denotes a hyperdegree). Thus we can prove 

COROLLARY 1. There are infinitely many distinct hyper degrees lying 
between 0 and 0'. 

COROLLARY 2.3 If a 11} set of axioms f or second-order arithmetic has 
an co-model, then it has an co-model whose f unctions are all of hyperdegree 
strictly less than 0'. 

1 For notations used see [2; 3; 6]; in particular we use boldface type for hyper-
degrees. 0' is the hyperdegree of O. 

2 G. Kreisel points out that a similar construction may be used to prove a result of 
J. R. Shoenneld's (Degrees of models, Amer. Math. Soc. Notices vol. 6 (1959) p. 530): 
the functions whose degree is strictly less than the degree 0' provide a basis for Si 
predicates in which the existential function quanfiier is bounded by a given recursive 
function. Ï am also indebted to Kreisel for suggesting Corollary 2 below. 

3 By a "IIj set of axioms" we mean a set of formulae whose Gödel numbers form a 
nj set. An "«-modelw is a model which is standard with respect to the natural numbers. 
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Without loss of generality we may suppose that the only function 
variables of second-order arithmetic are variables for functions of a 
single argument. Let j8 be a function of two arguments; then the 
condition that the set of functions \x•/?(£, i) (i = 0, 1, • • • ) provides 
a denumerable co-model for a 11} system of axioms can be expressed in 
the form (Ea)(x)R(a, 13, x), with recursive R. The corollary now fol­
lows immediately from the theorem. 

This corollary shows that not all sets which are representable (as 
defined in [2]) occur in every co-model. I t also shows that minimum 
co-models4 (if such there be) for inductively defined sets of axioms will 
not contain functions of hyperdegree 0', and so cannot be used (in 
the way anticipated by Wang in [7]) to extend the concept of pre­
dicative set to include, say, 0. 

I t would be of considerable interest if one could strengthen Theo­
rem I by proving the existence of minimal bases closed with respect 
to hyperarithmetic operations. The basis (ft given in Theorem I is 
certainly not minimal. Indeed, given any non-hyperarithmetic function 
a, Theorem I of [ l ] shows that one can omit from (B all functions in 
which a is recursive. And by a refinement of the construction used in 
[ l ] it can be shown that all functions whose hyperdegree is com­
parable with a may be omitted from <B. 
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4 M is a minimum co-model for the set of axioms A if it is an co-model for A, and 
no function of M provides an «-model for A, 


