## ON A PROBLEM OF KLEENE'S

## BY R. O. GANDY

Communicated by S. C. Kleene, August 18, 1960

THEOREM I. The class of functions of hyperdegree strictly less than 0' provides a basis for the predicate  $(E\alpha)(x)\overline{T}_1^1(\bar{\alpha}(x), a, a)$ , and hence for all predicates which belong to  $\Sigma_1^1$ .

This theorem settles a problem left open by Kleene in [4]. To prove it we observe that Theorem XXVI of [3] relativises uniformly to an arbitrary function  $\alpha$  (see Theorem XXVII of [3]). Thus there is a recursive K(u, v) such that:

- (i)  $(\alpha)(E\beta)(x)K(\bar{\alpha}(x), \bar{\beta}(x));$
- (ii)  $(\alpha)(\beta)_{\beta\in HA(\alpha)}(\bar{x})K(\bar{\alpha}(x), \bar{\beta}(x)),$

where  $HA(\alpha)$  denotes the class of functions hyperarithmetic in  $\alpha$ . Suppose a satisfies the predicate  $(E\alpha)(x)\overline{T}_1^1(\bar{\alpha}(x), a, a)$ ; then, by (i), there exist functions  $\alpha$ ,  $\beta$  such that

(A) 
$$(x)\overline{T}_1^1(\bar{\alpha}(x), a, a) \& (x)K(\bar{\alpha}(x), \bar{\beta}(x)).$$

And we can construct such functions recursively in O (cf. 5.5 (5) of [5]). But if  $O \subset HA(\alpha)$  then also  $\beta \subset HA(\alpha)$ , which would contradict (ii). Hence there is an  $\alpha$  of hyperdegree strictly less than  $\mathbf{0}'$  such that  $(x)\overline{T}_1^1(\bar{\alpha}(x), a, a)$ ; and this proves the theorem.<sup>2</sup>

By an obvious elaboration of the above argument we can construct, recursively in O, an infinite sequence of non-hyperarithmetic functions  $\alpha_i$  such that  $\alpha_1 \not< \alpha_0$ ,  $\alpha_2 \not< \alpha_0 \cup \alpha_1$ ,  $\cdots$  (where bold face type denotes a hyperdegree). Thus we can prove

COROLLARY 1. There are infinitely many distinct hyperdegrees lying between 0 and 0'.

COROLLARY 2.3 If a  $\Pi_1^1$  set of axioms for second-order arithmetic has an  $\omega$ -model, then it has an  $\omega$ -model whose functions are all of hyperdegree strictly less than  $\mathbf{0}'$ .

<sup>&</sup>lt;sup>1</sup> For notations used see [2; 3; 6]; in particular we use boldface type for hyperdegrees. 0' is the hyperdegree of O.

<sup>&</sup>lt;sup>2</sup> G. Kreisel points out that a similar construction may be used to prove a result of J. R. Shoenfield's (*Degrees of models*, Amer. Math. Soc. Notices vol. 6 (1959) p. 530): the functions whose degree is strictly less than the degree 0' provide a basis for  $\Sigma_1$  predicates in which the existential function quantier is bounded by a given recursive function. I am also indebted to Kreisel for suggesting Corollary 2 below.

<sup>&</sup>lt;sup>3</sup> By a " $\Pi_1^1$  set of axioms" we mean a set of formulae whose Gödel numbers form a  $\Pi_1^1$  set. An " $\omega$ -model" is a model which is standard with respect to the natural numbers.

Without loss of generality we may suppose that the only function variables of second-order arithmetic are variables for functions of a single argument. Let  $\beta$  be a function of two arguments; then the condition that the set of functions  $\lambda x \cdot \beta(x, i)$  ( $i = 0, 1, \cdots$ ) provides a denumerable  $\omega$ -model for a  $\Pi_1^1$  system of axioms can be expressed in the form  $(E\alpha)(x)R(\alpha, \beta, x)$ , with recursive R. The corollary now follows immediately from the theorem.

This corollary shows that not all sets which are representable (as defined in [2]) occur in every  $\omega$ -model. It also shows that minimum  $\omega$ -models<sup>4</sup> (if such there be) for inductively defined sets of axioms will not contain functions of hyperdegree 0', and so cannot be used (in the way anticipated by Wang in [7]) to extend the concept of predicative set to include, say, O.

It would be of considerable interest if one could strengthen Theorem I by proving the existence of minimal bases closed with respect to hyperarithmetic operations. The basis  $\mathfrak B$  given in Theorem I is certainly not minimal. Indeed, given any non-hyperarithmetic function  $\alpha$ , Theorem I of [1] shows that one can omit from  $\mathfrak B$  all functions in which  $\alpha$  is recursive. And by a refinement of the construction used in [1] it can be shown that all functions whose hyperdegree is comparable with  $\alpha$  may be omitted from  $\mathfrak B$ .

## BIBLIOGRAPHY

- 1. R. O. Gandy, G. Kreisel and W. W. Tait, Set existence, Bull. Acad. Polon. Sci. (Série des Sci. Math. Astr. et Phys.) to appear.
- 2. A. Grzegorczyk, A. Mostowski and C. Ryll-Nardzewski, The classical and the ω-complete arithmetic, J. Symb. Logic vol. 23 (1958) pp. 188-206.
- 3. S. C. Kleene, *Hierarchies of number-theoretic predicates*, Bull. Amer. Math. Soc. vol. 61 (1955) pp. 193-213.
- 4. ——, Quantification of number-theoretic functions, Composito Math. vol. 14 (1959) pp. 23-40.
- 5. ——, Arithmetic predicates and function quantifiers, Trans. Amer. Math. Soc. vol. 79 (1955) pp. 312-340.
  - 6. C. Spector, Recursive well-orderings, J. Symb. Logic vol. 20 (1955) pp. 151-163.
- 7. Hao Wang, Eighty years of foundational studies, Dialectica vol. 12 (1958) pp. 466-497.

## THE UNIVERSITY, LEEDS, ENGLAND

<sup>&</sup>lt;sup>4</sup> M is a minimum  $\omega$ -model for the set of axioms A if it is an  $\omega$ -model for A, and no function of M provides an  $\omega$ -model for A.