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By a space we shall mean a measurable space, i.e. an abstract set 
together with a <r-ring of subsets, called measurable sets, whose union 
is the whole space. The structure of a space will be the <r-ring of its 
measurable subsets. A measurable transformation from one space to 
another is a mapping such that the inverse image of every meas­
urable set is measurable. 

Let X and F be spaces, F a set of measurable transformations 
from X i n to 'F , and cj>F: FXX—^Y the natural mapping defined by 
$F( /> #)=ƒ(#)• A structure R on F will be called admissible if <f>Fl 

considered as a mapping from the product space (F, R)XX into F, 
is a measurable transformation.2 I t may not be possible to define 
an admissible structure on F; if it is, F itself will also be called 
admissible. We are concerned with the problem of characterizing, 
for given X and F, the admissible sets F and the admissible struc­
tures R on the admissible sets. 

The following three theorems may be established fairly easily: 

THEOREM A. A set consisting of a single measurable transformation 
is admissible. 

THEOREM B. A subset of an admissible set is admissible. Indeed, if 
G(ZF, Ris an admissible structure on F, and Ro is the sub space struc­
ture on G induced* by R, then RG is admissible on G. 

THEOREM C. The union of denumerably many admissible sets is ad­
missible. Indeed, if F = \J^Lx F{ and R\, R21 • • • are admissible struc­
tures on Fi, F2l • • • respectively y then the structure R on F generated 
by the members of all the Ri is admissible on G. 

Much more can be said if X and F are assumed to be separable, 
i.e. to have countably generated structures.4 To state our theorems 
in this case we first define the concept of Banach class, closely re­
lated to that of Baire class. Let 31 be an arbitrary class of meas-

1 The author is much indebted to Professor P. R. Halmos, who suggested a number 
of significant improvements in the complete version of this note. 

2 (F, R) is the space whose underlying abstract set is F and whose structure is R. 
3 RG consists of all intersections of G with members of R. 
4 The term is used by analogy with its topological use. We will also use the term 

"separable structure," meaning a countably generated structure. 

301 



302 R. J. AUMANN [July 

urable subsets of X. For each denumerable ordinal number o è l , 
we define classes P«(2l) and Qa(%) inductively as follows: (?i(2t) 
consists of all denumerable unions of members of §1, and Pi(2I) 
consists of all complements of members of (M2t) ; supposing 0/3(21) 
and P/s(2t) to have been defined for all (3<a, we define Q«(2I) 
= Gi(U,<«P*(*)) and P«(2l)=Pi(U /3<«P^(2l)). <2*(2t)UPa(2l) is the 
set of all subsets of X which can be "reached from SI" by performing 
at most a operations, where each operation consists of forming a de­
numerable union and a complement. If 2Ï generates the structure of 
X, then the union (over a) of all the (?a(2t) (or of the Pa(2t)) is the 
set of all measurable subsets of X. If 33 is a class of measurable sub­
sets of F and a ^ 0 is a denumerable ordinal number, then we define 
La{%, 33) to be the set of all functions f:X—»F such that for all 
5G(?i(33), tl(B)<EQa+1(n). If X and F are separable and 21 and 33 
are denumerable generating sets for their respective structures, then 
the union (over a) of all the L«(2l, 33) is the set of all measurable 
transformations from X into F. I t will be denoted F x . In this case 
£«(21, 33) is called the Banach class5 of order a for (2t, 33). A subset F 
of Yx is said to be of bounded Banach class if there is an a and de­
numerable generating sets 21, 33 such that F(ZLa(%, 33). I t is im­
portant to note that the definition of bounded Banach class is inde­
pendent of the choice of 21 and 33, i.e. that if FC£«(2t, 33), then for 
any other generating pair 21', 33', there is an a! such that 
FC.La>(W, 33')- If X and F are separable metric spaces and F is 
path wise connected, then the Banach classes coincide with the Baire 
classes (for appropriate choice of 21 and 33). 

THEOREM D. If X and Y are separable, then F is admissible if and 
only if it is of bounded Banach class. 

THEOREM E. If X and Y are separable, then every admissible sub­
set of Yx has a separable admissible structure. 

A space Z and its structure are called regular if for all x, y&Z, 
there is a measurable set in Z containing x but not y. I t is known (cf. 
[2]) that a space is separable and regular if and only if it is iso­
morphic6 to a subspace of J, where / denotes the unit interval [0, l ] 
with the usual Borel structure. 

THEOREM F . If X and Y are separable and regular, then every ad­
missible subset of Yx has a separable and regular admissible structure. 

6 Because of the work that Banach [l ] did in characterizing these classes. 
6 Two spaces are said to be isomorphic if there is a 1 — 1 correspondence between 

them that preserves measurability (in both directions). 
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The natural admissible structure on a given admissible set F is 
defined to be the smallest admissible structure on F, if it exists. 
Alternatively, it may be denned to be the intersection of all the ad­
missible structures on F, in case this is admissible. Not every admis­
sible set need have a natural admissible structure; the counter­
example is due to P. R. Halmos. 

If a£X and BCY, define F(a, B) = [fifEF, f(a)EB}. I t is not 
hard to prove that if B is measurable and a is arbitrary, then every 
admissible structure on F must contain F(a} B). A "converse" would 
be that the structure generated by the F(a, B) is admissible, and it 
would follow that it is also natural. 

THEOREM G. If X and Y are separable metric spaces and F con­
tains continuous functions only, then F has a natural admissible struc­
ture, which is generated by the set of all F(a, J5), where B is measurable 
and a is arbitrary. 

We now give some applications. A space is said to have the discrete 
structure if every subset is measurable. Let J be the space consisting 
of 0 and 1 only, and K the space of all positive integers, both with 
the discrete structure. If X is an arbitrary space, then XJ and XK 

are both admissible, and possess natural admissible structures which 
make them isomorphic to XXX and X*°Li Xi respectively, where 
the Xi are copies of X. In particular, JK is admissible and has a 
natural admissible structure which makes it isomorphic to I . These 
results are relatively trivial or a t least easily derivable from known 
results. 

The situation changes when we pass to exponent spaces with non-
discrete structures. For example, J1 may be considered the set of all 
measurable subsets of J. I t is not itself admissible. The set of all open 
subsets of I is admissible, as is the set of all closed subsets, the set 
of all Gs, etc. In general, a subset F of J1 is admissible if and only if 
all members of F can be constructed from the open subsets of I by 
taking denumerable unions and intersections at most a times, where 
a is an arbitrary denumerable ordinal number (which is fixed for 
given F, but may differ for different F). I do not know whether or 
not every admissible subset of J1 has a natural admissible structure, 
but if F is admissible, then we may endow it with an admissible 
structure in such a way so that it will be isomorphic to a subset of I . 

I1 is not admissible. The set of all continuous functions from I 
into I is admissible; more generally, a necessary and sufficient condi­
tion that a subset F of I1 be admissible is that there exist a denumer­
able ordinal number a such that all members of F are of Baire class a 
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at most. The set H of all continuous functions from I into / has a 
natural admissible structure; it is the Borel structure of II when 
considered as a metric space (in the uniform convergence topology). 
Again, I do not know whether or not every admissible subset of I1 has 
a natural admissible structure, but if F is admissible, we may endow 
it with an admissible structure in such a way so that it will be iso­
morphic to a subset of / . 

The above theory may be applied to give a generalization of 
Kuhn's theorem [3] about optimal behavior strategies in games of 
perfect recall, to games in which there may be a continuum of alter­
natives at some of the moves. 

A fuller account of the theory outlined above, together with proofs, 
will be published elsewhere. 
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