REMARKS ON AFFINE SEMIGROUPS!
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A semigroup is a nonvoid Hausdorff space together with a continu-
ous associative multiplication, denoted by juxtaposition. In what
follows S will denote one such and it will be assumed that S is com-
pact. It thus entails no loss of generality to suppose that S is con-
tained in a locally convex linear topological space %, but no particular
imbedding is assumed. For general notions about semigroups we refer
to [3] and for information concerning linear spaces to [2].

It has been known for some time [3] that if & is finite dimensional,
if S is convex (recall that .S is compact) and if S has a unit (always
denoted by %) then the maximal subgroup, H,, which contains « is a
subset of the boundary of S relative to .

Let F denote the boundary of .S, K the minimal ideal of S and, for
any subset 4 of S, let

P(4) = {x|x € S and x4 = 4}.

As is customary, 4B denotes the set of all products ab with a&E4
and bEB and we generally write & in place of {x}. It will be con-
venient to abbreviate P(S) by P. The structure of P is known in the
following sense—supposing that P[] the set PNEs[] and is
indeed the set of left units of S, E being the set of idempotents.
Moreover, if e€PNE then Pe is a maximal subgroup of S and the
assignment (x, y)—xy is an iseomorphism (topological isomorphism)
of PeX(PNE) onto P. The following is a corollary to the principal
result of [4]:

THEOREM 1. If S is compact and convex and if S#=K then
P(F) = P(S) CF.

It should be noticed that if .S has a unit then P=H,.

The quantifier affine will be applied to S if S is convex and if also
x(ty+ 1 —1)z) =txy+ (1 —8)xz and (ty+(1—¢t)z)x=tyx+ (1 —¢)zx for
any x, ¥ and 2&.S and any ¢ with 0<¢=<1. This differs a little from the
definition in [1].

This is a particularly pleasant concept because of its generality
and because of the host of examples of a simple geometric character.
One such is the convex hull of the # roots of unity, using complex
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multiplication. It is indeed gratifying that such a familiar geometric
form as a regular polygon should appear naturally in this context.
But, not to slight modernity, the set of all #X# stochastic matrices
is another example. A presently unpublished paper of M. J. P. Etter
contains interesting results concerning such semigroups.

THEOREM 2. If S is compact affine and if P#~[] then P is a closed
extremal subset, PINE 1is a closed convex extremal subset and for at least
one e PNE the set Pe consists entirely of extremal poinis.

It follows from this that if S has a unit then H, is a subset of the
extremal points of S [1].

We recall that a subset T of S is left simple, if it is nonvoid and if
Tx=T for each x&T. A result of Croisot states that each left simple
subset is contained in a maximal such and that no two of these inter-
sect. It is not hard to see that (S being compact) the maximal ones
are closed and it may be observed that the set P is maximal right
simple if it is not empty.

The next result is a kissing cousin of results of Kakutani, Klee and
Peck (see the discussion in Chapter V of [2]) and extends a result in

[1].

THEOREM 3. If S is compact affine and if T is a left simple subset of S
then

4 = {x|x=aT}
is a closed convex left ideal (and hence is nonvoid) while the set
{yl « = xy for each x € A}
is a closed convex subsemigroup.

Particularizing this it follows that if 7" contains the set of extremal
points then S has a left zero, thus K consists entirely of left zeroes
and is convex. Moreover, if .S has a unit and if H, contains the set of
extremal points the S has a zero [1].

Now it is shown in [5] that if S is compact and convex (not neces-
sarily affine) then K CE. An example in [1] shows that even if S is
compact affine (with unit, then K need not be convex. This is a close
shave since it follows from [6] (see Mathematical Reviews for an
error) that K is iseomorphic with the cartesian product of two convex
subsets of S.
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