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The classical maximum modulus theorem for solutions of second 
order elliptic equations was recently extended by C. Miranda [4] to 
the case of real higher order elliptic equations in two variables. Previ­
ously Miranda [3] has derived a maximum theorem for solutions of 
the biharmonic equation in two variables. In the case of more vari­
ables it was observed by Agmon-Douglis-Nirenberg [2 ] that a maxi­
mum theorem holds in the special case of elliptic operators with con­
stant coefficients with no lower order terms when the domain of 
definition is a half-space. 

In this note we describe a very general maximum theorem for 
solutions of (complex) higher order elliptic equations in any number 
of variables. We shall obtain various estimates in the maximum 
norm which will contain as a special case the extension of Miranda's 
results to any number of variables. 

We denote by G a bounded domain in En with boundary dG and 
closure G. For a function u(E.Cj(G) we introduce the usual maximum 
norm : 

(1) ||«||y = max max | D u(x) \ • 
|«| Si xeQ 

Here a = (cei, • • • , an) is a multiple index of length \a\ =ai+ • • • 
+an and Da is the corresponding partial derivative. Furthermore, 
for continuous functions u in G we introduce negative maximum 
norms ||w||-^ ( j>0 ) defined in the following manner. Write u in the 
form 

(2) u = E D*fa 
l«l*J 

wi th /«G Cl «'(G). Then: 

(3) N l - i = Infmax | | / a | | o , 

where the infimum is taken over all possible representations of the 
form (2). 

Actually we are going to use negative norms for functions ƒ defined 
on the (sufficiently smooth) boundary. If ƒ has continuous derivatives 
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up to the order j ^ 0 on dG then one defines the j t h maximum norm 
\\f\\jG in the usual way by means of local coordinates taking note of 
(1). Similarly it is obvious from (3) how one defines by means of local 
coordinates the negative norm \\f\\d-^ (j>0 and ƒ is continuous). 
Finally, for u<E:C3'(G) we also define the following Lp norm: 

(4) NU i p ( G ) = ( f E I D«u\'dx) '. 
Now let 

(5) A = Z a*(x)Da 

be â (complex) elliptic operator of order 2m in G. Suppose that 
a a £ C^a^(G)t G being of class C2m. In the case of two variables we also 
assume that A satisfies the "roots condition" (see, for instance, [2]) 
a condition which is always satisfied for real elliptic operators or 
when the number of variables is at least three. We consider now func­
tions ^£C w - 1 (G)nC 2 m (G) such that 

Au = 0 in G, 

(6) d*u 
= <j>j on dG, j = 0, • • • , m — 1, 

dn1 

(d/dn denotes differentiation along the normal). The main result is 
the following 

THEOREM I. Let I be an integer such that OSl^nt — 1. Then, for all 
functions u satisfying (6) the following estimate holds: 

— m—l 
Il II" V * II II "(* II II 

(7) \\u\\i S c 2_, |Wh-y + £i|Mk«7), 
i-o 

where c, c\ are constants depending on A and G but not on u. If, more­
over, the solution of the Dirichlet problem (6) is unique in a suitable 
(small) class of functions then (7) holds with Ci = 0. 

We note that the extension of Miranda's results corresponds to the 
case l = m--l. If Km — 1 then (7) contains negative norms on the 
right hand side (replacing these norms by the zero norm one obtains 
a weaker result). In particular, taking / = 0 and assuming uniqueness, 
one obtains the estimate: 

m—l m—l 

(8) max \ u\ ^ c } ] IWI-i ^ co X) m a x I 4>j| • 
G /«o y=o do 

Combining known existence results for the Dirichlet problem for 
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smooth data with, for instance, the estimate (8), one obtains easily 
a solution of the Dirichlet problem (6) when the given data <f>j are 
merely continuous. I t is an ordinary solution of the equation in the 
interior, continuous in G, w=0o on 5G, while the other Dirichlet data 
are taken in a generalized sense. 

The method of proof of Theorem I uses an artifice introduced by 
Miranda in [4]. I t consists in constructing a good "approximate 
solution" Uo of (6) which takes the same Dirichlet data as u. For this 
purpose the Poisson kernels which resolve explicitly the Dirichlet 
problem for elliptic operators with constant coefficients in a half-
space are used. These kernels were given in [2]. One then shows that 
the approximate solution UQ satisfies (7) with ci = 0. Thus the prob­
lem is reduced to showing that the function Ui — u — Uo (which has zero 
Dirichlet data) satisfies (7). This is done with the aid of the following 
Lp estimates for elliptic operators established recently by the author 
[ l ] (combined with Sobolev's inequalities). 

THEOREM II . Let uE.Ck{G)C\Lq{G) for some q>L Let p>l, 
P'~P/(p — l). Suppose that for all functions vÇzC2m(G) such that 
d3'v/dng' = 0 on dG (O^j^m — 1) the following inequality holds: 

(9) I uAvdx ƒ* 
•/ Q 

S Cu\\v\\2m-k,Lp>(G)> 

where Cu is some constant depending only on u. Then: 

(10) |M|*,Lp«?) ^ CoCu + Ci\\u\\Ll{Q) 

where c0f Ci are constants depending on the elliptic operator A and the 
domain but not on u. If, moreover, the solution of the Dirichlet problem 
(6) is unique then (10) holds with ci = 0. 

We shall illustrate the method of proof of Theorem I (in particular 
the manner in which Theorem II is used) in a special case where the 
construction of a good approximate solution UQ is particularly simple. 
Consider a fourth order elliptic operator in the plane of the form: 

(11) A = A2 + Ax 

where Ai is a lower order operator with variable coefficients. Take G 
to be a simply connected domain with sufficiently smooth boundary. 
Since by a conformai mapping the form of A remains unchanged 
(after division by some factor), we can assume without loss of gener­
ality that G is the unit-circle. As a suitable approximate solution one 
can choose here the solution u0 of the biharmonic equation A2u0 = 0 
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which takes the same Dirichlet data as u. This solution could be 
written down explicitly and it is easily verified by inspection that 

(i2) lWl?^^dWlîtf + Wîfo, ' = o,i, 
where K is some absolute constant. Put Ui = u — Uo. We shall now 
use Theorem II to show that U\ satisfies (7). Let A* be the formal 
adjoint of A. By Green's formula it is readily seen that for all func­
tions vECA(G) such that v = 0, dv/dn = 0 on dG: 

/
UiA*vdx = — I AiUo-vdx. 

o Jo 

Integrating the right hand side by parts and using Holder's inequality 
we find readily for / = 0, 1 that 

S C2\\m\\i,Lp{Q)\\v\\Z„itLv,m S Cz\\uo\\\\i\\v\\Z-itLp>{Q). (13) f uxA*vdx 
\J Q 

Applying Theorem II to U\ (with m = 2f & = Z+1), we find that 

(14) I H I z + l , ! ^ ) S Ci\\uo\\i + GsllttllUcG), 

with £5 = 0 if uniqueness holds. Choosing now p>2 we have by 
Sobolev's inequalities: 

(is) Mli ^ tfill «i||ï+i,Lp(ö) (Ki constant). 

Combining (IS), (14) and (12) we get Theorem I in the special case 
considered. 
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