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1. Introduction. The objective of this paper is to verify the con-
jecture made in [2] that every Hurewicz fibration [3] over a poly-
hedral base is fiber homotopy equivalent to a Steenrod fiber bundle
[6]. The result relies heavily on Milnor’s universal bundle construc-
tion [4] and the following extension [2] of a theorem of A. Dold [1].

THEOREM. If {Ei, p1, X} and {Es, ps, X} are Hurewics fibrations
over a connected CW-complex X and if f: E;—E, is a fiber-preserving
map such that f restricted to some fiber is a homotopy equivalence, then f
is a fiber homotopy equivalence.

2. The associated bundle. Let 7: E—X denote a map, where X is
a connected, locally finite polyhedron. Furthermore following Mil-
nor’s notation in [4], let S, E, G denote, respectively, the simplicial
paths in X, the simplicial paths emanating from a fixed vertex vo and
the simplicial loops at vo. If = [x,, - - -, %] is a simplicial path in
X we will find it convenient to set a(0) =x¢, (1) =x,. Now, define

= {(¢,0) EE X J| () = a(0)}
and a map £&: Q,—X by
£le, @) = a(1).
Furthermore, let
A= £ = {(e, ) | (e) = a(0), a(1) = vo}.
LemMA. {Q., £ X, A, G} is a Steenrod fiber bundle.

ProoF. Since the proof is entirely analogous to Milnor’s proof [4]
that E is a bundle over X, we content ourselves with a brief outline.
The action u: GXA—A is defined as follows:

”[g’ (e, Ol)] = (e, ga)-

Now, let v; denote a vertex in X and V; the star neighborhood of v;.
The coordinate functions

¢;: Vi X A— EXV))
are defined by

1 This research was supported, in part, by the Wisconsin Alumni Research Foun-
dation.
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¢f(x) (67 Ol)) = (8, [x7 vf]efa)

where ¢; is a fixed simplicial path from 2, to v;. We leave the remaining
details to the reader.
Now, define f: E—{Q, by

/(&) = (e, [x(e), (&) ]).

The following diagram is easily seen commutative:

S

E— Q,

™S &
X

3. The equivalence theorem. Let r: E—X, f: E—Q, be as in §2.

TrEOREM. If {E, T, X} is a Hurewicz fibration, then f is a fiber
homotopy equivalence.

Proor. Let F=n"1(v0) denote the fiber in E over vo. Then, in view
of the theorem mentioned in the introduction, it suffices to show
that f' =f| F: F—4 is a homotopy equivalence.

Let X denote the space of ordinary paths in X ending at v, and
let 7: X—X denote the fiber map given by 7(a) =a(0). Furthermore,

let E denote the space of simplicial paths [, - -+, x0] on X such
that x,=wv,. Then, since E is homeomorphic to £ under the cor-
respondence [x,, - - -, %o]<>[x0, - - -, x,], E is a fiber bundle over
X with fiber map p: E—X, given by p([x,, - + -, %¢]) =% and fiber
G. Consider then the fiber-preserving map %

- kb _

X——E

™S P

X

defined as follows: Let X denote a regular lifting function for { E, p, X}
and if e € X, set a(t) =a(1—¢), 0=t=<1. Finally, define

ﬁ(a) = 7‘([1)07 'UO]’ C_‘)(l)

Now, X and E are contractible, 77(vo) = 2(X), the space of ordinary
loops on X, is dominated by a CW-complex and G is a CW-complex.
Therefore % restricted to 2(X) is a homotopy equivalence and we
may conclude that % is a fiber homotopy equivalence. Thus % pos-
sesses a fiber homotopy inverse k. If 5,&X is the constant path and
[v0, vo] EG is the identity in G, then %(5o) = [vo, vo] and % may be



52 EDWARD FADELL [January

chosen so that k([vo, v0]) =%. We employ % and % to define an aux-
iliary map x: A—A as follows. Define

x(e, @) = (e, hh(a)).

Since kh is fiber homotopic to the identity map E—E, x~1: A—A.
Next, we define a homotopy H: A XI—A. If wis an ordinary path
in X and 0<s, £ =1, set
w,(2) = w(st)

and

w*(t) = w(s + ¢ — st).
Then, define, for 0551,

H((e, @), 8) = {Me, [H(@)])(1), A([W(a)]*) s

where \ is a regular lifting function for {E, v, B}. Note that
(e, [h(a)]:) (1) =h(a)(s) =k([h(a) ]*) (0) since & preserves end points
and [k() ]*(0) =h(a)(s). Also h([h(a)]*)(1) =, for the same reason.
Thus, H((e, ), s)EA. Furthermore,

Ho(e, @) = (¢, hh(a)) = x(e, «),
Hi(e, @) = {X(e, h(@))(1), [v0, v0]}

where [vo, 9] is the identity in G.
Finally, we define the required homotopy inverse for f': F—A4. Set

g(e, @) = e, h(e))(1).
Then, if yEF,

gf/(y) = g(y’ [‘vo, 7’0]) = My, 5)(1) = y
and hence gf' =1. Also, if (¢, @) €A,
f'ale, @) = (Ae, B(e))(1), [vo, ‘l)o]) = Hi(e, a).

Therefore f’g~x~1 and g is a homotopy inverse for f. This proves
the equivalence theorem.

REMARK. It is not difficult to check that F considered as a subset
of 4 is actually a strong deformation retract of 4.

REMARK. It is quite clear that our main result is false for Serre
fibrations [5] since there exist Serre fibrations over the unit interval
whose fibers are not of the same homotopy type. Also, it is possible
to exhibit examples of Hurewicz fibrations with 0-connected but not
locally contractible base spaces for which our main result is false.
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4, Extensions. The Equivalence Theorem is also valid if the base
space X is dominated by a locally finite polyhedron. Thus, our main
result can be stated as follows.

THEOREM. Every Hurewicz fibration over a base space dominated by
a locally finite polyhedron is fiber homotopy equivalent to a Steenrod
fiber bundle.

An interesting application is the following corollary.

COROLLARY. If X is a connected space dominated by a locally finite
polyhedron, then for every integer n =1, there exist n-connective Steenrod
Sfiber bundles over X.

Proor. One merely applies the above theorem to the #-connective
Hurewicz fibrations over X given by G. W. Whitehead in [7].
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