THE EQUIVALENCE OF FIBER SPACES AND BUNDLES1

BY EDWARD FADELL

Communicated by Hans Samelson, October 8, 1959

1. Introduction. The objective of this paper is to verify the conjecture made in [2] that every Hurewicz fibration [3] over a polyhedral base is fiber homotopy equivalent to a Steenrod fiber bundle [6]. The result relies heavily on Milnor's universal bundle construction [4] and the following extension [2] of a theorem of A. Dold [1].

THEOREM. If $\{E_1, p_1, X\}$ and $\{E_2, p_2, X\}$ are Hurewicz fibrations over a connected CW-complex X and if $f: E_1 \rightarrow E_2$ is a fiber-preserving map such that f restricted to some fiber is a homotopy equivalence, then f is a fiber homotopy equivalence.

2. The associated bundle. Let $\pi \colon E \to X$ denote a map, where X is a connected, locally finite polyhedron. Furthermore following Milnor's notation in [4], let \tilde{S} , \tilde{E} , \tilde{G} denote, respectively, the simplicial paths in X, the simplicial paths emanating from a fixed vertex v_0 and the simplicial loops at v_0 . If $\alpha = [x_n, \dots, x_0]$ is a simplicial path in X we will find it convenient to set $\alpha(0) = x_0$, $\alpha(1) = x_n$. Now, define

$$\Omega_{\pi} = \{(e, \alpha) \in E \times \tilde{S} \mid \pi(e) = \alpha(0)\}$$

and a map $\xi: \Omega_{\pi} \rightarrow X$ by

$$\xi(e, \alpha) = \alpha(1).$$

Furthermore, let

$$A \, = \, \xi^{-1}(v_0) \, = \, \big\{ (e, \, \alpha) \, \big| \, \, \pi(e) \, = \, \alpha(0), \, \alpha(1) \, = \, v_0 \big\}.$$

LEMMA. $\{\Omega_{\pi}, \xi, X, A, \tilde{G}\}$ is a Steenrod fiber bundle.

PROOF. Since the proof is entirely analogous to Milnor's proof [4] that \tilde{E} is a bundle over X, we content ourselves with a brief outline. The action $\mu: \tilde{G} \times A \rightarrow A$ is defined as follows:

$$\mu[g, (e, \alpha)] = (e, g\alpha).$$

Now, let v_j denote a vertex in X and V_j the star neighborhood of v_j . The coordinate functions

$$\phi_j \colon V_j \times A \to \xi^{-1}(V_j)$$

are defined by

¹ This research was supported, in part, by the Wisconsin Alumni Research Foundation.

$$\phi_i(x, (e, \alpha)) = (e, [x, v_i]e_i\alpha)$$

where e_j is a fixed simplicial path from v_0 to v_j . We leave the remaining details to the reader.

Now, define $f: E \rightarrow \Omega_{\pi}$ by

$$f(e) = (e, [\pi(e), \pi(e)]).$$

The following diagram is easily seen commutative:

$$E \xrightarrow{f} \Omega_{\pi}$$

$$\pi \searrow \swarrow \xi$$

$$X$$

3. The equivalence theorem. Let $\pi: E \to X$, $f: E \to \Omega_{\pi}$ be as in §2.

THEOREM. If $\{E, \pi, X\}$ is a Hurewicz fibration, then f is a fiber homotopy equivalence.

PROOF. Let $F = \pi^{-1}(v_0)$ denote the fiber in E over v_0 . Then, in view of the theorem mentioned in the introduction, it suffices to show that $f' = f \mid F : F \to A$ is a homotopy equivalence.

Let \overline{X} denote the space of ordinary paths in X ending at v_0 and let $\eta: \overline{X} \to X$ denote the fiber map given by $\eta(\alpha) = \alpha(0)$. Furthermore, let \overline{E} denote the space of simplicial paths $[x_n, \dots, x_0]$ on X such that $x_n = v_0$. Then, since \overline{E} is homeomorphic to \overline{E} under the correspondence $[x_n, \dots, x_0] \leftrightarrow [x_0, \dots, x_n]$, \overline{E} is a fiber bundle over X with fiber map $p: \overline{E} \to X$, given by $p([x_n, \dots, x_0]) = x_0$ and fiber G. Consider then the fiber-preserving map h

$$\overline{X} \xrightarrow{\overline{h}} \overline{E}$$

$$\eta \searrow \checkmark p$$

$$X$$

defined as follows: Let $\bar{\lambda}$ denote a regular lifting function for $\{\bar{E}, p, X\}$ and if $\alpha \in \bar{X}$, set $\bar{\alpha}(t) = \alpha(1-t)$, $0 \le t \le 1$. Finally, define

$$\bar{h}(\alpha) = \bar{\lambda}([v_0, v_0], \bar{\alpha})(1).$$

Now, \overline{X} and \overline{E} are contractible, $\eta^{-1}(v_0) = \Omega(X)$, the space of ordinary loops on X, is dominated by a CW-complex and \widetilde{G} is a CW-complex. Therefore \overline{h} restricted to $\Omega(X)$ is a homotopy equivalence and we may conclude that \overline{h} is a fiber homotopy equivalence. Thus \overline{h} possesses a fiber homotopy inverse h. If $\overline{v}_0 \in \overline{X}$ is the constant path and $[v_0, v_0] \in \widetilde{G}$ is the identity in \widetilde{G} , then $\overline{h}(\overline{v}_0) = [v_0, v_0]$ and h may be

chosen so that $h([v_0, v_0]) = \tilde{v}_0$. We employ h and \bar{h} to define an auxiliary map $\chi: A \rightarrow A$ as follows. Define

$$\chi(e, \alpha) = (e, \bar{h}h(\alpha)).$$

Since h is fiber homotopic to the identity map $\overline{E} \rightarrow \overline{E}$, $\chi \sim 1: A \rightarrow A$. Next, we define a homotopy $H: A \times I \rightarrow A$. If ω is an ordinary path in X and $0 \le s$, $t \le 1$, set

$$\omega_s(t) = \omega(st)$$

and

$$\omega^s(t) = \omega(s+t-st).$$

Then, define, for $0 \le s \le 1$,

$$H((e, \alpha), s) = \{\lambda(e, [h(\alpha)]_s)(1), \bar{h}([h(\alpha)]^s)\}$$

where λ is a regular lifting function for $\{E, \pi, B\}$. Note that $\pi\lambda(e, [h(\alpha)]_e)(1) = h(\alpha)(s) = \bar{h}([h(\alpha)]^e)(0)$ since \bar{h} preserves end points and $[h(\alpha)]^e(0) = h(\alpha)(s)$. Also $\bar{h}([h(\alpha)]^e)(1) = v_0$ for the same reason. Thus, $H((e, \alpha), s) \in A$. Furthermore,

$$H_0(e, \alpha) = (e, \bar{h}h(\alpha)) = \chi(e, \alpha),$$

$$H_1(e, \alpha) = \{\lambda(e, h(\alpha))(1), [v_0, v_0]\}$$

where $[v_0, v_0]$ is the identity in \tilde{G} .

Finally, we define the required homotopy inverse for $f': F \rightarrow A$. Set

$$g(e, \alpha) = \lambda(e, h(\alpha))(1).$$

Then, if $y \in F$,

$$gf'(y) = g(y, [v_0, v_0]) = \lambda(y, \bar{v}_0)(1) = y$$

and hence gf' = 1. Also, if $(e, \alpha) \in A$,

$$f'g(e, \alpha) = (\lambda(e, h(\alpha))(1), [v_0, v_0]) = H_1(e, \alpha).$$

Therefore $f'g \sim \chi \sim 1$ and g is a homotopy inverse for f'. This proves the equivalence theorem.

REMARK. It is not difficult to check that F considered as a subset of A is actually a strong deformation retract of A.

REMARK. It is quite clear that our main result is false for Serre fibrations [5] since there exist Serre fibrations over the unit interval whose fibers are not of the same homotopy type. Also, it is possible to exhibit examples of Hurewicz fibrations with 0-connected but not locally contractible base spaces for which our main result is false.

4. Extensions. The Equivalence Theorem is also valid if the base space X is *dominated* by a locally finite polyhedron. Thus, our main result can be stated as follows.

THEOREM. Every Hurewicz fibration over a base space dominated by a locally finite polyhedron is fiber homotopy equivalent to a Steenrod fiber bundle.

An interesting application is the following corollary.

COROLLARY. If X is a connected space dominated by a locally finite polyhedron, then for every integer $n \ge 1$, there exist n-connective Steenrod fiber bundles over X.

PROOF. One merely applies the above theorem to the n-connective Hurewicz fibrations over X given by G. W. Whitehead in [7].

BIBLIOGRAPHY

- 1. A. Dold, Über fasernweise Homotopieäquivalenz von Faserräumen, Math. Z. vol. 62 (1955) pp. 111-136.
 - 2. E. Fadell, On fiber homotopy equivalence, to appear in Duke Math. J.
- 3. W. Hurewicz, On the concept of fiber space, Proc. Nat. Acad. Sci. U.S.A. vol. 41 (1955) pp. 956-961.
- 4. J. Milnor, Construction of universal bundles, I, Ann. of Math. vol. 63 (1956) pp. 272-284.
- 5. J. P. Serre, Homologie singulière des espaces fibrés, Ann. of Math. vol. 54 (1951) pp. 425-505.
 - 6. N. Steenrod, The topology of fiber bundles, Princeton, 1951.
- 7. G. W. Whitehead, Fiber spaces and the Eilenberg homology groups, Proc. Nat. Acad. Sci. U.S.A. vol. 38 (1952) pp. 426-430.

University of Wisconsin