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1. Introduction. The objective of this paper is to verify the con­
jecture made in [2] that every Hurewicz fibration [3] over a poly­
hedral base is fiber homotopy equivalent to a Steenrod fiber bundle 
[6]. The result relies heavily on Milnor's universal bundle construc­
tion [4] and the following extension [2] of a theorem of A. Dold [ l ] . 

THEOREM. If [E\, p\, X} and {E2, pi, X\ are Hurewicz fibrations 
over a connected CW-complex X and if f: Ei—>E2 is a fiber-preserving 
map such that f restricted to some fiber is a homotopy equivalence, then f 
is a fiber homotopy equivalence. 

2. The associated bundle. Let TT: E—>X denote a map, where X is 
a connected, locally finite polyhedron. Furthermore following Mil­
nor's notation in [4], let S, Ë, G denote, respectively, the simplicial 
paths in X, the simplicial paths emanating from a fixed vertex Vo and 
the simplicial loops at Vo. If a= [xn, • • • , Xo] is a simplicial path in 
X we will find it convenient to set a(0)=x0l a(l)=xn. Now, define 

a T = {(*,«) eEXS\w(e) = a ( 0 ) } 

and a map £: Qv—>X by 

*(*,«) = a ( l ) . 

Furthermore, let 

A = fl(vo) = {(*, a) | *(e) = a(0), a( l) = vQ}. 

LEMMA. {0 r , %, X, A, G} is a Steenrod fiber bundle. 

PROOF. Since the proof is entirely analogous to Milnor's proof [4] 
that Ë is a bundle over X, we content ourselves with a brief outline. 
The action JU: GXA—>A is defined as follows: 

/*[& (*> «)] = (e, go). 

Now, let Vj denote a vertex in X and Fy the star neighborhood of Vj. 
The coordinate functions 

0y: 7y X il -> r T O 

are defined by 
1 This research was supported, in part, by the Wisconsin Alumni Research Foun­
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0y(#, 0 , a)) = 0 , [x, vjjeja) 

where e3- is a fixed simplicial path from Vo to Vj. We leave the remaining 
details to the reader. 

Now, define ƒ : E—+&* by 

f(e) = (e, [ T W , T W ] ) . 

The following diagram is easily seen commutative: 

ƒ 

X 

3. The equivalence theorem. Let r: E—>X, ƒ: -E—>QT be as in §2. 

THEOREM. If {E, w, X} is a Hurewicz fibration, then f is a fiber 
homotopy equivalence. 

PROOF. Let F = T~1(V0) denote the fiber in E over VQ. Then, in view 
of the theorem mentioned in the introduction, it suffices to show 
that f' =ƒ| F: F—>A is a homotopy equivalence. 

Let X denote the space of ordinary paths in X ending at v0 and 
let 7]: X—>X denote the fiber map given by 77(a) —a(0). Furthermore, 
let E denote the space of simplicial paths [xn, • • • , Xo] on X such 
that Xn — Vo. Then, since E is homeomorphic to Ê under the cor­
respondence [xni • • • , Xo]<-»[xo, ' * * > xn]y E is a fiber bundle over 
X with fiber map p: E—»X, given by p([xn, • • , x0]) =x0 and fiber 
G. Consider then the fiber-preserving map h 

X >E 

77 \ i /p 

X 

defined as follows : Let X denote a regular lifting function for {E, p, X} 
and if a £ Î , set â(t)=a(l-t), O^t^l. Finally, define 

h(a) = \([VQ, VO], a)( l ) . 

Now, X and E are contractible, rj^^o) =&(X), the space of ordinary 
loops on X, is dominated by a CW-complex and G is a CW-complex. 
Therefore h restricted to Q(X) is a homotopy equivalence and we 
may conclude that h is a fiber homotopy equivalence. Thus h pos­
sesses a fiber homotopy inverse h. lî VQÇ.X is the constant path and 
[z>o, flo]£G is the identity in G, then Â(ÂO) = [̂ 0, z>o] and h may be 
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chosen so that h([vo, v0]) = ÂO. We employ h and h to define an aux­
iliary map x- A-* A as follows. Define 

x(e, a) = (e, hh(a)). 

Since hh is fiber homotopic to the identity map E—»E, x ~ l : A—*A. 
Next, we define a homotopy i? : 4̂ X/—»-4. If w is an ordinary path 

in X and OSs, t£l, set 

w,(0 = œ(st) 

and 

co*(/) = co($ + / - 50. 

Then, define, f or 0 ^ s g 1, 

H((e,a),s) = {X(«, [A(a)].)(l), *([*(«)]•)ƒ 

where X is a regular lifting function for {£, 7r, 2?}. Note that 
7rX(e, [fe(a) ]«) (1) = &(<*) (5) = h( [h(a) ]*) (0) since h preserves end points 
and [h(a)]*(Q)=h(a)(s). Also h([h(a)]8)(l)~Vo for the same reason. 
Thus, H((e, a), s)ÇîA. Furthermore, 

H0(e, a) = (e, hh{a)) = x(*, a), 

F i fe a) = |X(*,A(a))(l), K r o ] | 

where [flo, *>o] is the identity in G. 
Finally, we define the required homotopy inverse for / ' : F—>A. Set 

g(e, a) = \(e, *(a))(l). 

Then, if yÇîF, 

gfiy) = g(y, [»o, »o]) = x(y, »o)(i) = y 

and hence g/' = l. Also, if (0, a ) £ - 4 , 

ƒ'«(«, «) = (X(«, A(a))(l), K *o]) = F i fe a). 

Therefore ƒ 7 g ~ x ~ l a n d g is a homotopy inverse for ƒ'. This proves 
the equivalence theorem. 

REMARK. I t is not difficult to check that F considered as a subset 
of A is actually a strong deformation retract of A. 

REMARK. I t is quite clear that our main result is false for Serre 
fibrations [5 ] since there exist Serre fibrations over the unit interval 
whose fibers are not of the same homotopy type. Also, it is possible 
to exhibit examples of Hurewicz fibrations with 0-connected but not 
locally contractible base spaces for which our main result is false. 
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4. Extensions. The Equivalence Theorem is also valid if the base 
space X is dominated by a locally finite polyhedron. Thus, our main 
result can be stated as follows. 

THEOREM. Every Hurewicz fibration over a base space dominated by 
a locally finite polyhedron is fiber homotopy equivalent to a Steenrod 
fiber bundle. 

An interesting application is the following corollary. 

COROLLARY. If X is a connected space dominated by a locally finite 
polyhedron, then for every integer n*zl, there exist n-connective Steenrod 
fiber bundles over X. 

PROOF. One merely applies the above theorem to the w-connective 
Hurewicz fibrations over X given by G. W. Whitehead in [7]. 
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