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Many years ago and independently of each other S. Mandelbrojt
and M. Schiffer were led to the following conjecture, which has ap-
peared in print only recently [2, p. 326]:

CONJECTURE M. S. If two power series Yy a,8’, 2.1 b2’ are schlicht
in the unit circle, then also the power series

. ab,
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s schlicht in the unit circle.

This will be disproved in the following lines. Let D be the image
of the unit circle by w= D _; a,2”. We denote by the symbols S, Z and
K the classes of such power series for which D is schlicht, schlicht
and star-shaped, schlicht and convex, respectively. Evidently
KCZCS.

Observe now that » ; 2?&K. By a recent result concerning de la
Vallée Poussin means [2, p. 298] we conclude that
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and therefore [2, Lemma 5, p. 321] that
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Applying the Conjecture M. S. to this special polynomial and an arbi-
trary power series we obtain the following

COROLLARY OF THE CONJECTURE M.S. If f(2) = Dr a,2? €S then
also

hid 2n
Z(n+ V)a,,z =

1

1 This paper was prepared partly under the sponsorship of the United States Air
Force, Office of Scientific Research, ARDC, under a contract with the University of
Pennsylvania.
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In other words: The de la Vallée Poussin means of schlicht func-
tions are also schlicht. However, this corollary is now easily dis-
proved as follows:

We appeal to a result of C. Loewner [1, pp. 117,118, and 120]: To
every given function k(r) which is continuous for =0 and such
that |x(1')| =1, there corresponds a power series f(2)=2z-+a:3?
+asz®+ - - - which is in S and is such that

as = — Zf k(r)e~"dr,
0

a5 = 4( fo QK(T)e—de)z -2 fo " (k) e,

We now select
k(r) = e, (y real constant = 0).
The integrals are easily evaluated and we find
fG@) =2z— 2 22 + 3= & B+ .8
1+ iy (1 + iy)*

Applying the Corollary of the Conjecture M.S. for =3 we conclude
that the cubic polynomial

P(z) = 152 + 64222 + az2® € S.
But then the quadratic polynomial

1
3 (I + 7m)P'(x) = B — iv)2® — 8(1 + iv)z + 5(1 + iv)?
can not have any zeros in the interior of the unit circle.
On the other hand we find that
14 4y
3 — iy

¢ = (4 — (1 + 5
is one of the two zeros of this quadratic; { is regular for all real v and
we find its Taylor expansion at the origin to be

1 9
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Now
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showing that [ ¢ I <1 provided that v is sufficiently small. This contra-
dicts our last italicized statement and completes our proof.

For the discussion of a conjecture of Polya and Schoenberg ob-
tained from the Conjecture M.S. by replacing in its statement the
term “schlicht” by “star-shaped,” we refer to [2, pp. 324-334].
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