
PARTITIONING CONTINUOUS CURVES 

R. H. BING 

I. INTRODUCTION 

1. The continuous curve. By a continuous curve we mean a com­
pact, locally connected, metric continuum. For definitions of locally 
connected, continuum, and other terms used in this paper, see either 
[18] or [2 l ] . Those who like to visualize topology concretely may 
wish to think of a continuous curve as a chunk out of Euclidean 
3-space—one that is connected (all in one piece), one that is bounded 
(lies on the interior of a sphere), and one that is locally connected 
(nearby points belong to small connected subsets). A wad of paper, 
an irregularly shaped rock, or the earth itself may be considered as 
examples. However, our remarks about continuous curves will apply 
equally well to those in Euclidean spaces of all dimensions and to 
those in a Hubert space. 

When Jordan first introduced the term continuous curve, he de­
fined it analytically to be the image (in the plane) of a straight line 
interval under a continuous transformation. I t was not until over 
twenty years later that it was discovered that any compact locally 
connected metric continuum was the image of a straight line interval 
under a continuous transformation and conversely. This interesting 
and unusual discovery adds spice to the study of mathematics [24, 
p. 12]. Another interesting aspect of this discovery is that it was 
made independently by two mathematicians, Hahn and Mazur-
kiewicz. Since Peano had shown earlier that a square plus its interior 
is the image of a straight line interval, a continuous curve is some­
times called a Peano continuum. 

In this discussion we shall be interested in the continuous curve it­
self and not the continuous transformation of an interval. Hence, we 
use the definition in the first paragraph rather than the analytic one. 
In this discussion we shall be interested in the structure of a continu­
ous curve. 

2. Examples of continuous curves. A straight line interval, a 
square plus its interior in the plane, and a cube plus its interior in 
3-space are examples of continuous curves. In fact, any closed w-cell 
or w-simplex is an example. One can get a less familiar continuous 
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curve by taking a continuum which is the sum of a finite number of 
dissimilar continuous curves. 

If M is any compact point set whatever, it is possible to obtain a 
continuous curve by adding to M a countable collection of arcs. We 
use this fact in constructing the following two examples of continuous 
curves which we shall use. 

FIG. 1 

EXAMPLE A. Let M be the cartesian product of a straight line 
interval and a Cantor set. Form a continuous curve by adding to M 
a decreasing sequence of horizontal straight line intervals as indi­
cated in Figure 1. These intervals extend from (0, 1/2) to (1, 1/2), 
and (0, 1/4) to (1/3, 1/4), from (2/3, 1/4) to (1, 1/4), from (0, 3/4) 
to (1/3, 3/4), . . . . 

EXAMPLE B. I t is shown in [5] that there is a bounded continuum 
S in Euclidean 3-space that is irreducible with respect to separating 
3-space and has the property that if two of its subcontinua intersect, 
one is a subset of the other. The continuum S is 2-dimensional. I t is 
called hereditarily indecomposable because no subcontinuum of it is 
the sum of two proper subcontinua of the subcontinuum. A continu­
ous curve M may be formed by adding to S the sum of a decreasing 
sequence of mutually exclusive arcs. If K is a subset of M irreducible 
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with respect to separating M, each component of K is indecom­
posable. 

3. Partitioning. An interval can be partitioned. This fact is used 
in defining the integral of a continuous function over an interval. 
(faf(x)dx = lim 23/(£,-) Ax» where f »• is a point of and Axt- is the length 
of the ith element of the partitioning of [a, b].) 

In studying a square plus its interior it is sometimes convenient 
to partition it into small pieces. For example, in integrating over a 
square region, we may partition it into small rectangles (if we use 
rectangular coordinates) or into pieces of other shapes (in polar 
coordinates for instance). 

FIG. 2 

A partitioning of a continuous curve M is a finite collection G of 
mutually exclusive connected open subsets of M whose sum is dense 
in M [ô]. If the mesh of G is less than e (each element of G is of di­
ameter less than €), G is called an €-partitioning. The essential dif­
ference between a partitioning and a grating [13, p. 279] is that the 
elements of a partitioning are connected. I t is much like a grille de­
composition [ i s ] . 

In defining the integral over a plane domain R (ƒƒ/?ƒ(#, y)dS 
= lim (mesh of partitioning —»0) ]T)/(£t-, rji)ASi) we do not need to 
impose the conditions that the elements of the partitioning are either 
connected, mutually exclusive, or open. However, we shall be using 
partitionings in connections where these properties are important. 
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4. Decreasing sequence of partitionings. If G and H are two 
partitionings of the same continuous curve, G is called a refinement of 
Hxi each element of G is a subset of an element of H. In Figure 2, the 
partitioning represented by light lines is a refinement of the one repre­
sented by heavy lines. A sequence Gi, G2, • • • of partitionings is 
called a decreasing sequence if, for each positive integer i, Gl+i is a 
refinement of G* and the mesh of G*- approaches 0 as i increases with­
out limit. 

FIG. 3 

While it is apparent that there is a decreasing sequence of parti­
tionings of a square plus its interior, it is not so obvious that every 
continuous curve has such a sequence of partitionings. However, it is 
true that any continuous curve has such a sequence. This has given 
us new information about the continuous curve. 

5. Purpose of paper. It is only within the last three years that it 
has been known that each continuous curve can be partitioned [6; 4; 
15; 16]. It is the purpose of this paper to point out some recent de­
velopments, to show ways in which a continuous curve can be parti­
tioned, and to point out analogies between the ways in which a 
square plus its interior can be partitioned and the ways in which an 
arbitrary continuous curve can be partitioned. Details of some proofs 
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are included for completeness, but some readers may prefer to skip 
them. 

II . BREAKING A CONTINUOUS CURVE INTO TWO PIECES 

1. The type of division needed. If one pursues the proper attack, 
it is not difficult to show that any continuous curve can be parti­
tioned. However, if one gets off on the wrong track, considerable diffi­
culty may be encountered. 

Suppose it is desired to partition a continuous curve into pieces of 
diameters less than a fixed positive number e. A straightforward 
method of attack is to divide the continuous curve into two pieces, 
divide each of the two pieces, and continue this procedure until an 
€-partitioning results. However, unless certain precautions are taken, 
this method does not succeed. 

If € = 1, M is a square plus its interior, and at the first stage it is 
partitioned into two pieces as shown in Figure 3, the above procedure 
will not lead to a partitioning. The common boundary of D\ and D2 
is a part of the closure of the graph of y=s in 1/x and neither Dj 
nor As is the sum of a finite number of connected subsets each of 
diameter less than 1. 

A set has property S if, for each positive number e, the set is the 
sum of a finite number of connected subsets each of diameter less 
than €. This notion was used by Sierpinski and when R. L. Moore 
used it later, he called it property S [19; 17; 18]. 

A precaution to take in partitioning a continuous curve is to divide 
it a t each step so that the pieces have property S. 

We shall be interested in the following result [6]. 

THEOREM 1. If H and K are two mutually exclusive closed subsets of 
a continuous curve M, there are two mutually exclusive open subsets 
DH and DR of M containing H and K respectively such that (a) each of 
DH and DK has property S and (b) M=*T)H+T)K-

Before proving this theorem, we shall review the method of con­
structing a set with property S. 

2. Gradual growing process. This is a method used to form sets 
with property S. Compare with [22; 21 ]. 

A set H is said to e-grow into a set H' in a set MUM contains H', 
each point of H' belongs to a connected e-subset (subset of diameter 
less than e) of H' that intersects Ü, and for some positive number S, 
H' contains all connected 5-subsets of M that intersect H. 

Let M be a set with property S, H be a subset of M, and € be a 
positive number. Suppose one wishes to obtain a subset of M with 
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property S which contains H but no point whose distance is more than 
e from H. Such a set can be obtained by the following gradual grow­
ing process. Let €1, €2, • • • be a sequence of positive numbers whose 
sum is no more than e. Let H ci-grow into a set D± in AT, Di e2-grow 
into a set Z>2 in M, • • • , D{ €»+i-grow into a set Di+i in ikf, • • • . 
Then the sum D0 of Di, D2, • • • is an open subset of M> has property 
S, contains H but no point at a distance more than e from H. 

3. An attempt to divide. One might try to prove Theorem 1 by 
letting each of the sets H and K grow gradually in M into mutually 
exclusive open subsets whose sum is dense in M. Some difficulty may 
be encountered in trying to keep the two subsets from intersecting 
and at the same time making their sum dense in M. This difficulty 
could be overcome if we could answer the following question in the 
affirmative. 

QUESTION. Does there exist a positive integer n such that the fol­
lowing result holds for each continuous curve M, each positive num­
ber €, and each pair of mutually exclusive closed subsets H and K of 
Ml If Ris a finite subset of M such that each point of R belongs to an 
arc in M of diameter less than e that intersects H+K, there are two 
collections AH and AK of arcs satisfying the following conditions: 

(a) Each element of AH intersects H but not K and each element of 
AK intersects K but not H nor any element of AH» 

(b) Each element of R belongs to an element of AH+AK» 

(c) Each element of AH+AK is of diameter less than ne. 
We cannot let w = l and always get such collections AH and AK, 

for let M be the sum of the interval from ( — 10, —1) to (10, 1) 
and the interval from ( - 1 0 , 1) to (10, - 1 ) , # = { ( - 1 0 , 1)}, K 
= { ( 1 0 , l ) } , i ? = { ( - 1 0 , - 1 ) , (10, - 1 ) } , and € = 11. Had the answer 
been in the affirmative for n = 1, the attempts made in [15] to parti­
tion a continuous curve might have succeeded [16], 

Since we do not know the answer to the above question, we shall 
get some other results before proving Theorem 1. 

4. A crude division. Before proving Theorem 1, it is convenient 
to prove a weaker theorem. 

THEOREM V. Theorem 1 is true if condition (a) is replaced by the 
weaker conditions that DH has property S and DK has only a finite num­
ber of components. 

There are two essentially different methods of proving Theorem 1'. 
One method is due to Whyburn [22, Corollary, p. 137]. He considers 
an uncountable family of sets with property S such that of any two 
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of the sets, one contains the closure of the other. He shows that one 
of the sets can be modified so that it still has property S and the 
complement of its closure has a finite number of components, 

An essentially different method is to let H grow gradually and K 
in a wild fashion to form sets DH and DR satisfying the conditions 
of Theorem 1' [6]. This method is similar to another attack we shall 
use later so we include the details. 

Details of second method of proof of Theorem 1'. The open subsets 
DH and DR are formed by permitting H and K to grow so that H 
grows in a convergent fashion. The procedure is as follows. 

We use p(p, q) to denote the distance between p and q. 
Suppose that, a t the it\\ stage, H and K have been enlarged to sets 

Hi and Ki such that p(Hi, Ki)>0 and each point of M belongs to an 
arc in M of diameter less than 1/2* that intersects Hi+Ki. Let Ri 
be a finite subset of M such that each point of M belongs to an arc 
in M of diameter less than l/2*+ 1 that intersects Ri. For each point 
p of Ri let Ap be an arc in M—"Hi from p to a point of Ki if there is 
one; if there is no such arc AP1 let Bp be an arc of diameter less than 
1/2* in M—~Ki from p to a point of Hi. 

Use Hi to denote Hi plus the sum of the Bps, Ki to denote Ki 
plus the sum of the Aps, and 54- to denote p(Hi, Ki). Let Hi+i 
= {p\p lies on an arc of diameter less than ôi/3 in M that intersects 
Hi } and Ki+i~ {p\p lies on an arc of diameter less than ôi/3 in M 
that intersects K{ }. 

Since Hi has et-grown into Hi+i for €»• = 7 / ( 2 m -3) and the e/s have 
a finite sum, ^Hi — Dn has property S. 

Since Ki has only â finite number of components and each com­
ponent of Ki+i intersects K^ ^Ki — DR has only a finite number of 
components. 

Since no point of M is at a distance of more than 1/2* from Hi+Ki, 
M = DH + DR. 

5. Proof of Theorem 1. By using Theorem 1', it is shown in 
Theorem 3' of the next section that for each positive number €, 
there is an e-partitioning of M. We use this result in establishing 
Theorem 1. For each integer i, let Gi be a l/2*'-partitioning of M. 

The general idea is to let both H and K grow gradually into sets 
DH and DR. Suppose at the ith stage H and K have been enlarged 
to Hi and Ki so that p(H», Ki)>0 and ü ; + i £ i intersects each ele­
ment of Gi. Let {pj} be a finite number of points such that each 
element of G»-+i contains an element of {pj} and each point of {pj} 
lies in an element of Gi. 

If there is an arc in both M—Hi and an element of Gi from pj to a 
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point of K{, let Aj be such an arc; if there is no such arc, let Bj be an 
arc in both M—7£i and an element of G% which is irreducible from 
pi to Hi. 

Let p(Hi, Ki)=8i where HÏ is the sum of Hi and all the B/s 
while K'i is the sum of Ki and all the A/s. 

Suppose Hi+i= {p\ there is an arc in M of diameter less than di/3 
from p to HI } and Ki+i=* {p\ there is an arc in M of diameter less 
than ôi/3 from p to Ki } . 

The sets Hi and Ki have ergrown into Hi+\ and Ki+i where 
€i = 7 / ( 2 m • 3). Hence, the sets DH = Z ^ * ' an<3 -PÜ: = ] C ^ have prop­
erty S. Since Hi+Ki intersects each element of Gt-, M~DH+DK» 

I I I . PARTITIONING 

1. Treating S-sets as continuous curves. It is necessary that a 
set M have property S in order to be partitionable. (A set M is 
partitionable if for each positive number e, there is an e-partitioning 
of it.) The converse is true but it is not so obvious. However this 
converse follows from the facts that a continuous curve is partition-
able and that any connected set with property S can be imbedded in 
a continuous curve so that any partitioning of the continuous curve 
produces a partitioning of it with no larger mesh. 

If G is a partitioning of a continuous curve, the pieces of G are not 
continuous curves. However, if these pieces have property S, they 
can be satisfactorily dealt with. 

Suppose M is a connected set with property S and R(p, q) is the rel­
ative distance for Af, that is, R(p, q) is the greatest lower bound of 
the diameters of all connected subsets of M containing p+q. It may be 
shown that R(p, q) preserves the topology of M and the diameter of 
any connected set is not increased under R(p, q). Hence, any e-parti­
tioning of M under the metric R{p, q) is an €-partitioning of it under 
its original metric. 

If we add only enough points to M to make it complete under 
R(P> <z)> the resulting set M' is a continuous curve. Any €-partitioning 
of M' induces an e-partitioning of M. In fact we have the following 
result [6, Lemma 1; 21, pp. 154-158]. 

THEOREM 2. If M is a connected set with property S with a relative 
distance metric, M' is the complete enclosure of M, and D is a connected 
open subset of M'% then M-D is a connected open subset of M. 

2. Crude partitioning. Before showing that a continuous curve can 
be partitioned in various fashions, we show that it can be parti­
tioned in some manner. 
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THEOREM 3'. For each positive number e and each continuous curve 
My there is an ^-partitioning G of M. 

We use the following corollary which results from applying 
Theorems 1' and 2 to each component of M. 

COROLLARY OF THEOREM 1'. Suppose that the set M has property S 
and that H and K are two of its subsets such that p(H, K)>0. Then M 
contains two mutually exclusive open subsets DH and DK containing H 
and K respectively such that DH+DK is dense in M1 DH has property S, 
and DK has only a finite number of components. 

The general idea in proving Theorem 3' is to use Theorem 1' and 
divide M into two pieces DH and DK so that DH has property S, 
DK has only a finite number of components and is of diameter less 
than €. We apply the corollary of Theorem 1' to DH and divide it into 
two pieces one of which has property S and the other of which has 
only a finite number of components each of diameter less than e. The 
procedure is continued so as to get an e-partitioning of M. 

DETAILS OF PROOF OF THEOREM 3'. Let (pu p2} • • • , pn) be a 

finite subset of M such that no point of M is at a distance as much as 
e/4 from {pi}. Let Ki be the set of all points of M that are a t a dis­
tance from pi of less than e/4 and Hi be the set of those that are at 
a distance from pi of more than e/3. 

Applying Theorem I' to M, we find that there are mutually exclu­
sive subsets DHX and DKx of M containing Hi and K\ respectively such 
that DHI-\-"DKI~M, DHX has property S, and DKX has only a finite 
number of components. The components of DKX are of diameters less 
than e and are elements of G. We divide the components of DHX 

further. 
If DHX intersects both i?2 and K2j we apply the corollary of Theo­

rem V to DHX and find that there are open subsets DH2 and DK2 of 
DHl containing H2-DHl and K2DH1 respectively such that DH2+DK2 

is dense in DHV DH2 has property S, and DK2 has only a finite number 
of components. The components of DK2 are elements of G. If K2 does 
not intersect DHV we do not add elements to G at this stage but let 

The process is continued. For each positive integer i less than n — 1 
for which DH{ intersects both Hi+i and Ki+i we apply the corollary 
to DH{ and get mutually exclusive open subsets Dni+V DK{+I of DH{ 

containing Hi+\• DH{ and Ki+i-Dni respectively such that DH{+1 

+DK{+1 is dense in DHi> Dni+1 has property S, and DKi+l has only a 
finite number of components. If DH{ does not intersect i£»+i, we sup­
pose Z>irt+1 = 0 and DHÎ+\-DHV 
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The elements of G are the components of DKV DRV • • • , DKn~v 

and DHn_v 

3. A more useful partitioning. If G is an arbitrary partitioning of a 
continuous curve as described in Theorem 3', it may not be the mem­
ber of any decreasing sequence of partitionings because some ele­
ment of it may not have property S. However, if we use Theorem 1 
instead of Theorem 1', we obtain the following extension of Theo­
rem 3'. 

THEOREM 3. For each continuous curve M and each positive number e 
there is an e-partitioning G of M such that each element of G has prop­
erty S. 

A partitioning whose pieces have property S is called an S-parti-
tioning. If its mesh is less than €, it is an e-S-partitioning. 

4. Decreasing sequence of partitionings. Theorem 2 may be ap­
plied to any set with property S to get the following corollary of 
Theorem 3. 

COROLLARY OF THEOREM 3. For each positive number e and each set 
M with property S, there is an e-S-partitioning of M. 

Using the corollary we find that if G is an S-partitioning of a con­
tinuous curve and € is a positive number, each piece of G may be 
e-S-partitioned. Hence, we have the following useful result [6]. 

THEOREM 4. Each continuous curve has a decreasing sequence of 
partitionings. 

IV. CORE REFINEMENTS 

In Figure 2, the partitioning represented by light lines is a core 
refinement of the one represented by heavy lines. 

A partitioning is regular if each of its elements is the interior of its 
closure. This prevents pieces from having unnecessary boundary 
points. 

If the partitioning H is a refinement of the partitioning G, the ele­
ments of H which have a boundary point in common with the bound­
ary of an element of G are called border elements of H. Other ele­
ments are called interior elements. 

The partitioning H is called a core refinement of the partitioning G 
if the following conditions are satisfied : 

(a) Each border element of H is adjacent to an interior element. 
(b) For each element g of G, the closure of the sum of the interior 

elements of H in g is connected. 
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(c) Both G and H are regular partitionings. 
In [8] additional conditions were used in defining a core refinement 

for brick partitionings but we shall not need them here. We regard the 
interior of the closure of the sum of the interior elements of H in g as 
the core of g. 

In some of the applications of partitionings, use is made of the 
following result. 

THEOREM 5. For each continuous curve M there is a decreasing se­
quence Giy G2, • • • of partitionings of M such that Gi+i is a core refine­
ment of G{. 

DETAILS OF PROOF. We prove this theorem by showing that if G 
is a regular S-partitioning of M and e is a positive number, there is an 
e-S-partitioning H which is a core refinement of G. 

For each element g of G, let H' be a regular €-S-partitioning of g. 
There is a dendron T in g that intersects each element of Hf. Let H" 
be a regular S-partitioning of g that refines H' and has a mesh less 
than the distance between T and the boundary of g. 

Each element h'f of H" with a boundary point on the boundary of 
g is a subset of a border element of H. If h' is the element of H' con­
taining ft", the border element ft of H containing ft" is the interior 
of the closure of the sum of all elements k of H" such that there is 
an arc in ft' from ft" to k that does not intersect the closure of any 
element of H" whose closure intersects T. All elements of H" not in 
such a border element of H are interior elements of H. 

V. T H E CONVEXIFICATION PROBLEM 

1. The method of solution. A metric is a convex metric for a con­
tinuous curve M if for each pair of points of M there is a point of M 
halfway between them. In 1928 Menger raised [14] the question as 
to whether or not each continuous curve has a convex metric that 
preserves its topology. During the following twenty years a number 
of contributions [ l ; 3; 9; 10; 12] were made toward the solution of 
this question but it was not until the notion of partitioning was 
introduced that the final answer was given [6; 15]. 

THEOREM 6. Each continuous curve has a convex metric. 

The fact that each continuous curve has a decreasing sequence 
Gi, CJ2, • • • of partitionings is used in showing that each continuous 
curve has a convex metric. Each piece of each Gi is assigned a size and 
the distance between two points py q is defined in terms of the sizes 
of the chains from p to q whose links are elements of the G/s. 
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2. Definition of convex metric. Let &, G2, • • • be a sequence of 
partitionings of M such that d+i is a core refinement of d and the 
mesh of G l+i is less than one third the distance between any two 
nonadjacent elements of G». 

The elements of d are assigned a size of 1/2. Each border element 
of Gi+i is assigned a size equal to one half the size of the element of Gi 
containing it. Each interior element of Gi+i is given a size equal to 
l/(2l+1-iVr

f-+i) where Ni+i is the number of elements in (?»•+!• 
If K is a continuum which is equal to the closure of the sum of the 

elements of Gi, the ith size of K is the sum of the sizes of the ele­
ments of Gi in K. We define Ei(p, q) as the minimum of the ith sizes of 
all continua containing p+q. I t may be noted that if £»•(ƒ>, q) is the 
ith size of K, then K is the sum of a chain G, G, • • • , Cn of con­
tinua such that G contains £, Cn contains g, Cy intersects G if and 
only if | j —&| ^ 1 and Cy is the closure of an element of Gi. The con­
vex metric for M is D(p, q) =lim £«• (p, q). 

We note that D(p, p)=0 and D(p, q)^0. Also D(p, q) =2?(2, £) be­
cause £,-(£, q) =£i (g , £). 

If £, g, r are three points, £*•(£, q)+Ei(q, r)*tEi(p} r) because if 
Kpq and 2£ffr are continua with ith sizes containing p+q and g + r 
respectively, the ith size of the continuum Kpq+Kqr is no more than 
the sum of the ith sizes of Kpq and if Qr. Hence, D(x, y) satisfies the tri­
angle condition. 

We now show that if p is a limit point of the set A, then D(p, A) = 0. 
Since £ , ( ^ a ) + l / 2 * « è E * w f o 2). D(P, Q)£Ei(P, 2 ) + 1/2'. How­
ever, there is a point q oî A such that ^ + 2 belongs to the closure of 
the same element of d. Then D(p, q) g 1/2*"1 and Z>(£, a) (a element 
of A) is not bounded from 0. 

We now show that if p is not a point of the closed set A, D(p, A) 
> 0 . Suppose i is an integer such that no element of d is adjacent to 
both an element of Gi whose closure contains p and also to an element 
of d whose closure intersects A. If € is the least of the sizes of the 
elements of df we shall show that D(p} A)*ze. 

If K is a continuum containing p, intersecting A, and having an 
(i+k)th size, K contains 2k elements g of d+k such that g is a border 
element of d+k and lies in border elements of G»-+i, G*+2, • • • , Gt+jb-i. 
The size of g is as much as e/2* and the (i+k)th size of X is more than 
e. Hence, for each point a of A, Ei+k(p, a)>e and £>(£, a)^e. 

We show that the metric D(xt y) is convex by showing that if 
p and 2 are two points, there is a point halfway between them. Let 
if be a continuum containing p+q of ith size £»•(£, q). Then if is 
the sum of two subcontinua Kp and Kq containing p and q respec-
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tively each of whose ith sizes differ from one half the ith. size of K 
by less than 1/2*. There is a point r» in Kp-Kq such that neither 
Ei{py ri) nor Ei(q, rt) differs from Ei{p, q)/2 by more than 1/2'. If 
r is a limit point of ri, r2, • • - , it is halfway between p and g under 
the metric D(x, y). 

Although a solution to the convexification problem has been given 
by means of partitionings, it would still be interesting to see the 
answer given by other methods. 

3. Unique segments. If a circle is given a convex metric, for each 
point p there is a point q and two points rh r2 such that both r\ and r2 

are halfway between p and g. There is not a unique segment from 
p to q. 

Although under a convex metric there is not a unique segment be­
tween each pair of points of a circle, there is a dense subset of a circle 
such that each pair of points of this dense subset is joined by a unique 
segment. In another paper I shall show that each continuous curve 
has such a convex metric. The result may be stated as follows. 

THEOREM 7. Each continuous curve has a dense subset R and a convex 
metric D such that each pair of points of R are the end points of a unique 
segment under D. 

For the surface of a sphere, there is a convex metric and a positive 
number e such that each pair of points whose distance apart is less 
than e are end points of a unique segment. I t would be interesting to 
know a topological characterization of such sets. 

A closed w-cell in a Euclidean space has a convex metric such that 
if two segments intersect in more than one point, the sum of these 
two segments is a segment. I t would be interesting to obtain a topo­
logical characterization of continuous curves that can be given such 
a convex metric. 

Each continuous curve with a convex metric that gives unique seg­
ments can be shrunk to each of its points in a very nice fashion. One 
might wonder if those continuous curves with such nice convex 
metrics could be characterized by the fashion in which they can be 
shrunk to points. 

VI. MAPPING CONTINUOUS CURVES ONTO INTERVALS 

1. Introduction. We have seen that if H and K are two mutually 
exclusive closed subsets of a continuous curve M, M can be divided 
into two mutually exclusive open subsets DH and DK containing H 
and K respectively such that each of the sets DH, DK has property S. 
We shall now see how uncountably many such divisions can be made. 
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We map M onto a straight line interval [0, 1 ] so that H goes into 
0, K goes into 1, and the inverse of each nondegenerate connected 
subset of [0, l ] has property S [4]. Then except for a countable 
number of points x of [0, 1 ], the collection of components of T"1 [0, x) 
and T~l(x, l ] is an S-partitioning of M. We use (a, b] to denote the 
closed interval [ay b] minus the point a. 

2. Details of the transformation. To prove the theorem regarding 
the mapping of M onto [0, 1 ] we first prove the following lemma. 

LEMMA FOR THEOREM 8. Suppose C\ and C2 are mutually exclusive 
closed subsets of a continuous curve My M— d (2 = 1, 2) has property S, 
and e is a positive number such that Cj (j^i) can e-grow into M—d. 
Then for each positive number 5, M contains mutually exclusive open 
subsets Di and D2 satisfying the following conditions: 

(a) Ci can h-grow into Di and (e+ô)-grow into M—Dj. 
(b) M-(Dt+Dt) can b-grow into M-(&+&). 
(c) Di and M—Di have property S. 

PROOF OF LEMMA. Let G be a 7-S-partitioning of M— ( & + G 0 
where 7 is less than either ô or p(&, Ctj/i. 

Let Ai be a finite collection of arcs in M— Cj (i^j) such that each 
of these arcs is of diameter less than €, each intersects d, and each 
element of G intersects both an arc of Ai and also an arc of At. 

Let G' be a Y'-S-partitioning of M— (C1+C2) which refines G, 
where yf is less than the distance between d and any arc of Aj (i?*j). 
Let R' be the closure of the sum of all elements g of G' such that g 
either lies in an element of G not adjacent to C1 + C2 or g lies in 
an element of G adjacent to d and g intersects an arc in Aj (i^j). 
Then R is the sum of R' and the closure of all elements g' of G' of 
the following sort: g' lies in an element g of G which is adjacent to 
d but Rf separates g' from d in g + d. 

We define Di to be the interior of the closure of the sum of Ci and 
all elements of Gr which do not lie in R but lie in an element of G 
adjacent to Ci. 

Each point of Di— Ci belongs to an arc intersecting d and lying in 
both Di and also in the closure of an element of G. This shows the first 
part of condition (a) is satisfied. An arc showing that the second part 
of this condition is satisfied may be obtained by going out an ele­
ment of A i and then continuing in the closure of an element of G. 

To see that condition (b) is satisfied, note that each point of M 
— (C1+C2) belongs to an arc that intersects R and lies in both 
M— (C1+C2) and also in the closure of an element of G. 

Condition (c) is satisfied because G' is an S-partitioning. 
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THEOREM S. If H and K are mutually exclusive closed subsets of the 
continuous curve M, there is a continuous transformation T of M onto 
the interval [0, l ] such that (a) T(H) = 0 and T(K)=*1, (b) if W is a 
nondegenerate connected subset of [0, l ] , T~~l(W) has property S, (d) 
if 0 belongs to W, each component of T~~l(W) intersects H and if 1 be­
longs to W, each component of T~l(W) intersects K. 

We prove this result by repeated applications of the preceding 
lemma. To get a start we obtain C\~T~x(f$) and C2 = J ,~1(l). Let G 
be an €-S-partitioning of M where e=p(iJ , K)/3. Then G is the sum 
of the closures of all elements of G whose closures intersect II plus 
all points that this sum separates from K. Similarly, C2 is the sum of 
the closures of all elements of G whose closures intersect K plus all 
points that this sum separates from H. 

In our first application of the lemma we use ÜP^O), T ^ l ) , 1/2 
for Cu C2y 8. The sets M — (Di+D2), Dif D2 we obtain are called 

r-Ki/2), r-ifo, 1/2), r-Ki/2,1]. 
In our next application of the lemma we let r - ^ O ) , T-1[l/2, l ] 

^T"\\/2) + T^{\/21 i ] , x/2, 1/4 be the G, C2, €, 5 of the lemma 
and denote by T-^l/é), I^l[0f 1/4), T-l{{/^ l ] the sets M 
- C D i + A ) , Di, D2 obtained. 

In general, suppose that T^fO, i/V] and T~l[(i+l)/2^ l ] 
have been defined. We apply the lemma using JT""1^, i/2J], 
r - 1 [ ( i + l ) / 2 ' , 1], 1/2', 1/2'+* for &, C2, €, Ô and denote by 
T-l[(2i+\)/V+ll r ^ f O , ( 2 i + l ) / 2 ^ ) , r - 1 ( ( 2 i + l ) / 2 ' + 1 , 1] the sets 
A f - ( D i + P 2 ) , A , D2 obtained. 

After T~x(x) has been defined for all numbers of [0, l ] of the form 
x=i/2'\ the definition of T is continued in a continuous fashion— 
that is, T^1(x) is the intersection of all closed sets T"l\i/2\ (i+l)/23'] 
for which i/2>'^x^(i+l)/2>\ 

In the next section we need to use the following information about 
the transformation T. 

THEOREM 9. If T is a continuous transformation mentioned in Theo­
rem 8, then except for a countable number of values x ( O ^ x g l ) , 
both T^fO, x) and T~l{x, l ] are uniformly locally connected. Further­
more, if M is the closure of a uniformly locally connected domain D and 
B is a subset of the boundary of D, except for a countable number of 
values x, each point of T~~l(x) B is a limit point of both r _ 1 [ 0 , x) B 
and T~l(xy l]-B. 

A set D is uniformly locally connected if for each positive number 
e there is a positive number 8 such that each pair of points of D 
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whose distance apart is no more than 8 belongs to a connected sub­
set of D of diameter less than e. 

The proof of Theorem 9 is contained in the proof of Theorem 5 of 

a b 
FIG. 4 

VII. BRICK PARTITIONING 

Figure 4 shows two ways in which a square plus its interior may be 
partitioned. The partitioning represented in Figure 4b is called a 
brick partitioning. A partitioning G is a brick partitioning if each of 
its elements is uniformly locally connected and equal to the interior 
of its closure while the interior of the sum of the closures of each 
pair of elements of G is uniformly locally connected. If G is a brick 
partitioning, not only can the elements of G be subdivided so as to 
form a partitioning G' which refines G but also adjacent elements of G 
and part of their common boundary can be added so as to form a par­
titioning G" such that G refines G". 

In Figure 2, the left-most piece of the partitioning shown by heavy 
lines is not uniformly locally connected. Also, the interior of the sum 
of the closures of the two left-most pieces is not uniformly locally 
connected. If the three left-most pieces are replaced by the interior 
of the sum of their closures, a brick partitioning results. 

Wilder showed [24, Theorem 3.4, p. 79] that if p is a point of a 
continuous curve M and D is a domain containing p, there is a uni­
formly locally connected domain E containing p and lying in D. 
However, to get a brick partitioning, we need to know that there is 
such a domain E such that M—E is uniformly locally connected. We 
get this result from Theorems 8 and 9. 

I t would be interesting to know if a modification of the methods 
used by Wilder would give this result. I t appears that Moise had this 
in mind in [15]. 

Repeated applications of Theorems 8 and 9 show the following 
result [4]. 
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THEOREM 10. Each continuous curve has a decreasing sequence of 
brick partitionings. 

The first part of Theorem 9 is used in getting the elements of the 
partitionings to be uniformly locally connected and the second part 
is used to get the interior of the sum of the closures of two elements 
to be uniformly locally connected. 

VIII . T H E BOUNDARIES OF THE PIECES 

1. Locally connected boundaries. In partitioning a square plus its 
interior as shown in Figure 4, the boundaries of the pieces are continu­
ous curves and can be partitioned. If M is a finite complex and G is 
the collection of simplexes of M which are not part of the boundary 
of any other simplex, the elements of G have boundaries which are the 
sums of a finite number of continuous curves. These boundaries can 
be partitioned. (G may not be a brick partitioning.) 

One might wonder if each continuous curve can be partitioned so 
that the boundaries of the pieces are locally connected. However, 
Example A (Figure 1) described in §1 shows that this is not always 
possible. If the continuous curve is partitioned into pieces of di­
ameters less than 1, each piece which is not a subset of a horizontal 
line has a boundary with uncountably many components. 

However, in the partitioning of Example A, each component of 
the boundary of a piece of a partitioning is either a point or an 
interval and is therefore locally connected. One might wonder if 
each continuous curve can be partitioned so that the components of 
the boundaries of the pieces are locally connected. Example B of §1 
shows that this is not always possible. 

I t would be interesting to be able to characterize the types of con­
tinuous curves that can be partitioned into pieces with nice bound­
aries. 

2. Dimensionally regular partitionings. Suppose that M is an 
^-dimensional continuous curve. I t is known that for each positive 
number € there is an open €-covering H of M such that no point of 
M is covered by more than n + 1 elements of H [ i l ] . 

A partitioning G of the ^-dimensional continuous curve M is 
called dimensionally regular if it is regular (each piece is the interior 
of its closure) and if the following inequality is satisfied when 
j^n + 1. 

Dimension (intersection of any j boundaries) ^ n + 1 — j . 

In another paper I shall prove the following result. 
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THEOREM 11. There is a decreasing sequence of dimensionally regular 
partitionings for each n-dirnensional continuous curve. 

I t may be noted that the boundaries of the pieces will be of dimen­
sion less than n. 

IX. APPLICATIONS OF PARTITIONINGS 

The study of partitionings throws light on the structure of con­
tinuous curves and is of interest aside from its applications. In fact, 
I regard the result that any continuous curve is partitionable as more 
interesting and topologically important than any of its applications. 

The first use made of the fact that any continuous curve is parti­
tionable was to solve the convexification problem as mentioned in §V. 

In studying a continuous curve Mf one may consider a decreasing 
sequence of finite open coverings of M. A decreasing sequence of 
partitionings might be used instead. For example, in showing that 
each connected open subset of a continuous curve is arcwise con­
nected, one may use chains whose links are connected open sets to 
define the arcs [18]. Chains whose links are pieces of partitionings 
could be used instead. This was done in the following application. 

1. The Kline sphere characterization. A nondegenerate continu­
ous curve M is topologically equivalent to the surface of a sphere if 
and only if it satisfies the following two conditions: 

(a) No pair of points separates M. 
(b) Each simple closed curve separates M. 

Several mathematicians contributed to the proving of this result ( [25] 
and other references in [7]). The final link was in showing that condi­
tions (a) and (b) also imply that no arc separates M [7]. This was 
done by showing that if there is an arc which separates M, there is a 
simple closed curve that does not. The simple closed curve was con­
structed by means of chains whose links are open sets. By using the 
notion of brick partitioning, the above result was strengthened [4] 
by showing that condition (b) could be replaced by the following 
weaker condition : 

(b') Each simple closed curve whose complement has property S 
separates M. 

2. Basis with connected intersections. A countable basis for a con­
tinuous curve is a countable collection Dh D2, • • • of open subsets 
such that if p is a point and E is an open set containing p there is an 
integer i(p, E) such that Di contains p and lies in £ . If 5 is a square 
plus its interior, there is a countable basis for 5 whose elements are 
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the intersections of 5 with interiors of circles with rational radii and 
rational centers. The intersection of any two elements of such a basis 
is connected. One might wonder if each continuous curve has such a 
basis. 

E. E. Floyd noticed that if G is a brick partitioning of M and H is 
the collection of all open sets h such that for some point p, h is the 
interior of the sum of the closures of all elements of G whose closures 
contain p> then the intersection of any two elements of H is connected. 
Consequently, Floyd and I showed [8] that any continuous curve 
has a countable basis such that the intersections of the elements of 
this basis are connected and uniformly locally connected. 

3. Characterizing 3-space. Suppose H and K are two sets such 
that for each positive number e there are e-partitionings GH and GK 
of II and K respectively and a 1-1 correspondence between the ele­
ments of GH and the elements of GK such that two elements of GH 
have a common boundary point if and only if the corresponding 
elements of GK have a common boundary point. One might wonder 
if this implies that H is homeomorphic to K. It does not because if 
H is a square plus its interior and K is the sum of H and a straight 
line interval that intersects H in just one point, there are such par-
titionings GH and GK. However, it is possible to use the notion of 
partitionings to characterize certain sets. 

The two-manifold can be partitioned so that the boundary of the 
elements of the partitionings are simple closed curves. Some 3-mani-
folds can be partitioned so that the boundaries of the pieces are simple 
surfaces (topologically equivalent to the surface of a sphere). I t is 
an open question as to whether or not all compact 3-manifolds with­
out boundary have this property. The 3-manifold obtained by adding 
an ideal point at infinity to ordinary Euclidean 3-space is called 
a 3-sphere. In fact any set homeomorphic to it is called a 3-sphere— 
for example, the surface of a sphere in Euclidean 4-space. Using the 
notion of partitioning, we can get the following characterization of a 
3-sphere [2]. 

A necessary and sufficient condition that a continuous curve M be a 
3-sphere is that one of its decreasing sequences of regular partitionings 
Gi, G2, • • • have the following properties: 

(a) The boundary of each element of Gi is a simple surface. 
(b) If the boundaries of two elements of ^Gi intersect, this intersec­

tion is a 2-cell. 
(c) The intersection of the boundaries of three elements of Gi is one-

dimensional at each of its points. 
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(d) If g is an element of d - i (g~M if i = l) the elements of d may 
be ordered gi, g%, • • • , gn so that the boundary of gj (i = l, 2, • • • , n) 
intersects the boundary of g plus the boundary of g i+g2+ • • • +gy-i in 
a connected set. 

4. Simultaneous partitionings. In a forthcoming paper [20 ] Garth 
Thomas shows that if the continuous curve M\ is imbedded in the 
continuous curve M2, there is a partitioning G2 of M2 such that the 
intersections of Mi and the elements of G2 give a partitioning Gi of Mi. 

X. QUESTIONS 

We have already raised certain questions in the preceding sections 
but we mention some more here. 

1. If M is locally simply connected, can it be partitioned into 
simply connected pieces? 

2. If M is a chain from H to K where each of the sets H and K 
contains only one point, is there an open transformation satisfying 
the conditions of Theorem 8? Why burn shows such a transformation 
in [23] if M is 1-dimensional. If the dimension of M is finite, is there 
such a transformation such that T"1(x) is of dimension less than the 
dimension of M ? 

3. Is there a decreasing sequence of partitionings Gi, G2l • • • of M 
and a boundary operation carrying subsets of d into subsets of £J»+I 

that gives a homology theory? 
4. Suppose Mi and M2 are two continuous curves such that one 

can be given a convex metric with unique segments but the other can­
not. Is there an essential difference between the types of partition­
ings that Mi and M2 can have? 

Many other things could be said concerning partitioning, but there 
is much to learn. We summarize the results of this paper in one 
sentence: Any continuous curve can be partitioned in somewhat the 
same way that a square plus its interior can be partitioned. 
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