SOME REMARKS ON RULED SURFACES
J. ERNEST WILKINS, JR.

In a previous paper [1]! the author showed that the projective
differential geometry of a nondevelopable ruled surface S in three-
dimensional space could be studied by means of the expansion

- 1 3 1 3 1 4 1 2093 — 1 4
Z =Xy — "3_' Yy© — —3— YuXy® — '1'2'7'03’ - 'Z'Yuux y '1_2"Yuvxy
1 1
+ —66 (107714 - 'va)ya - EZ’Yuuvxzy‘
1) . 2 .
+ 86 (1077,‘“ + 1071‘ - 'me)xy

1
-‘—20141) 15 uv — Yoovw ¢ tt
+360( VYo + 157y Vovo) ¥® +

for one nonhomogeneous coordinate 2 as a power series in the other
two nonhomogeneous coordinates x and y. Here # is a function of the
form A (@)u?+B(@w)u+C(v). It was also shown that there is a one-
parameter family of cubic surfaces with fifth order contact with S,
namely,

1 1
(2) -3—73’“ + D22 + (z — xy) (Px by (vo/7)y + Mz + 1)

+ y2s(Iy + J3) = 0,

where D is the parameter and P, M, I, and J are defined as follows:

P = (15v, + 40y 'vu — 1297,,)/807",
M = (407" Yuvs + 127757 s0 — 807 vus — 15v2)/320v
I = (Syo + 407 74 — 477,,)/807

T = (15va7s + 4077 — 1277u¥e0 + 407 vuu)/2407".

In this paper we shall report some further results on nondevelop-
able ruled surfaces which can be obtained with the help of the above
formulas.

It was shown in [1] that S'is a cubic surface if and only if <4 =B =0,
where
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oA = [(1575 = 129700 — 407 '7) (Yu¥o — VVur)
+ 407 (Yure = YYus)u]/9607",
B = [16007'(2¥Yuu — v4) + 9607 (Vs — ¥¥ur)s
— 24007 Yo (vaYs — YYus) + (127700 — 157§)2]/576007‘.

Since this criterion requires derivatives of v of the third order, it is of
interest to notice that the following theorem is true.

THEOREM. The nondevelopable ruled surface (1) is cubic if and only if
P=M=7=0. It is Cayley's cubic scroll if and only if I =0 also.

If S is cubic we have seen [1] that we can assume that either
v¥=3 or v=3u/10v2. By direct substitution it is found in the first
case, which corresponds to Cayley’s cubic scroll, that P=M=J=1I
=0, and in the second case that P=M=J=0, I=1/10v%. The con-
verse follows from the identities

9607 A = (157, — 12v720) (47 M + v.P) + 407" (44 M + 7.P).,
3608 = 40v'(3] — 2vuP + 7P)) + 6v(4yM + 7.P),
- 971:(4'YM + 'YVP)’
which imply thate/ =B=0if M =P=J=0.
If S is cubic, the surface (2) will actually have sixth order contact
with S if and only if D=Py,./6, and it will then coincide with S.
Let us now seek to find the double points of the cubic surface (2).

The homogeneous coordinates of such a point must satisfy the equa-
tions F;=0, where

Fy

It

1
:xu(sz - *Z (Yo/Y)%s + Mxs + xl) + (%124 — %2%3),
1
Fo= — x5 (sz vy (Yo/Y)%s + Mxs + 1) + P(2164 — %23),
2 1
F3 = yxg — %2 (sz iy (vo/7)%s + Mz + xl)
1 2
vy (vo/7) (%124 — x225) + 2T 2324 + T4,

1
Fi = 3Dx: + xl(sz - (Yo/v)%s + Mxs + xl)

+ M (%124 — %2%3) + Ixi + 2Jx3%4.
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Setting x4=0, we readily find that (—P, 1, 0, 0) is the only double
point in the tangent plane, and that this point is a double point for
all the cubic surfaces (2).

To find double points not in the tangent plane, suppose that x;50.
Then Fi=F.=0 if and only if either

1
3) Pxy — T (Yo/7)%3 + Mxs + 21 = 0, 2124 — %23 = 0,

or
(4) F1=0, Px4+x3=0.

When (3) holds we may set x4=1 and see that a double point must
satisfy (3) and

(5) yws + 2Ixs+J =0,  Ixs-+ 2Jxs+ 3D = 0.

Let us suppose for the moment that I?25vyJ. Then two values of
x3 are determined by the first of equations (5). Each value of x; de-
termines a value of D by the second of equations (5). These values of
D are different since I?>vJ. For each value of x3 we determine x;
and x2 by solving the equations

1
(6) X1 + sz = z- ('y,,/'y)xg -_ M, X1 — X2Xg = 0.

Hence a unique x; and x; can be found unless x3= — P. We conclude
that if the surface S is such that I?svJ, yP2—2IP+J#0, then
there are two cubic surfaces (2) each of which has a (unique) double
point which is not in the tangent plane and satisfies equations (3).

On the other hand, if yP2—2IP+J=0 and I?>vJ, then one root
x3 of the first of equations (5) is equal to —P and the other is not.
Corresponding to the root which is different from — P there exists one
cubic surface (2) which has a unique double point not in the tangent
plane which satisfies equations (3). When x;= — P, equations (3.4)
have a solution if and only if

1
(7) 0=M+ Z ('Yv/'Y)P = ('Yu'Yv - 'Y'Yuv)/4'72~
Since it is easy to see that

192009 (vP" — 2IP + J) = (1575 — 12y74)

8
® — 16007 (Ys — 297uw),
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it is clear that when YP2—2IP+J=0 and x;= — P, equations (3.4)
have a solution if and only if 4/ =®B=0. In this case S is a cubic sur-
face itself and the entire line x;+ Px; =x3+ Px4=0 consists of double
points for the cubic surface (2) determined by the parameter
D=(—1P2+2JP)/3. Since S is cubic, P=0. Therefore, D=0 and
hence the cubic surface (2) is the surface S itself. Since I?5#£yJ =0, S
is not Cayley’s cubic scroll. We conclude that if yP2—2IP+J=0,
I*s£yJ, then there is one cubic surface (2) which has a (unique)
double point which is not in the tangent plane and satisfies equa-
tions (3). There is another cubic surface (2) which has a double point
not in the tangent plane which satisfies equations (3) if and only if .S
is itself a cubic surface, not Cayley’s cubic scroll, in which case the
cubic surface (2) coincides with .S which has the whole line x; =x3=0
as a line of double points.

When I2=+]J, then only one value of x;is determined by the first of
equations (5). If also yP2—2IP+J0, then this value of x3 is dif-
ferent from —P and so there exists one cubic surface (2) with a
(unique) double point which is not in the tangent plane and satisfies
equations (3).

When I?=+J and yP2—2IP+ J=0, reasoning like that used two
paragraphs earlier shows that there is a cubic surface (2) with a
double point not in the tangent plane which satisfies equations (3)
if and only if .S is Cayley’s cubic scroll, in which case the cubic surface
(2) is S itself and has the whole line x;=x3=0 as a line of double
points.

Now let us consider double points which satisfy equations (4).
Setting x3= —P, x4=1, we see that the equations Fy=F;=F;=0
become

1
9 2(x14 Pxs) = — M — T (Yo/TP = — (vu¥s — YY) /47

(10) (4vx2 — ¥o) (Vu¥s — YYuo) = 3293(yP? — 2IP + J),
(11) D= - (21 — M)(vuys — YYw0)/24v* — (IP? — 2JP)/3.

Unique values for %1, x2, and D can thus be determined provided that
YuYo —YYu #0. The cubic surface (2) so determined may, however,
coincide with a cubic surface previously determined which has a
double point satisfying equations (3). To find the condition that this
occurs we explicitly solve equations (9), (10), and (11). Let n=2.v,
~YYurs 0=5V5 —4Y¥oo, A =792 —29Yuu. It follows from equations (10)
and (8) that

% = v,/4y + 362/800v%n — 2vA/3n
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if 7£0. From (9) and the definitions of P and M we then find that
M — x; = 963/64000v%y + 30%y,/1600v%y — A0/40v%
+ 31/8y* — vuA/3n,

and finally we conclude from equation (11) and the definitions of I,
P, and J that

(12) 3D = (60vYuu + 1572 + 80y vuvuu)/320v%

The cubic surface (2) with this value of D coincides with a cubic
surface (2) with a double point which is not in the tangent plane and
satisfies equations (3) if and only if there is a value of x; which satisfies
equations (5) simultaneously when D satisfies equation (12) and
which belongs to a double point obtained from equations (3).
Eliminating x; between equations (5) we see that this coincidence
will occur if and only if

(3Dy — IJ)? — A(I* — 4J)(J? — 3ID) = 0,

an equation which can be reduced in a straightforward manner to
— 81A6% 4 4059%0% 4+ 28800v4A%?2 — 648000y4y*A0

-+ 2430000v4p* — 2560000v%A% = 0.

We conclude that if 75%0 and equation (13) fails to hold, then there
is another cubic surface (2) in addition to the ones already found
which has a double point not in the tangent plane.

If 50 and equation (13) holds, then there is a value of xs which
satisfies equations (5) when D has the value given by equation (12).
This value of x; is equal to — P if and only if yP2—2IP+J=0 and
3D=—IP?4+2JP, and hence if and only if M—x,=0 and 962
=1600v*A. When 902=16007%A it is easy to see that M —x;=37/8y?
%0. Hence the value of x3 thus obtained can never be equal to —P.
It follows that if either I?2—~J or yP2—2IP+J is different from zero
no new cubic surfaces (2) having a double point not in the tangent
plane can be found by considering equations (4) if #>£0 and equa-
tion (13) holds. When I?—yJ=vP2—2IP+4J=0, it is seen that
A =0=0 and hence that the left-hand side of equation (13) reduces to
24300007y4n* which does not vanish.

If »=0, equations (9), (10), and (11) have a solution if and only
if yP2—2IP+J=0 also, and then 3D= —IP2+2JP. We have al-
ready encountered this case among the solutions of equations (3)
and so no new cubic surface can be obtained from equations (4)
when 7 =0.

We may conveniently summarize our results in the following table,

(13)
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in which D is an abbreviation for the left-hand side of equation (13).

TasLE I

I*—yJ yP?=2IP+J Yots=YYw D (3 @
* * * * 2 1
* * * 0 2 0
* * 0 * 2 0
* * 0 0 Impossible
* 0 * * 1 1
* 0 * 0 1 Y
* 0 0 * Impossible
* 0 0 0 2 0
0 * * * 1 1
0 * * 0 1 0
0 * 0 * 1 0
0 * 0 0 Impossible
0 0 * * 0 1
0 0 * 0 Impossible
0 0 0 * Impossible
0 0 0 0 1 0

In the first four columns a « is entered if the quantity at the head of
the column is different from zero and a 0 is entered if it vanishes. In
the fifth column is entered the number of cubic surface (2) with a
double point not in the tangent plane which can be obtained by con-
sidering equations (3), and in the sixth column is entered the number
of such additional cubic surfaces which can be obtained by consider-
ing equations (4). We have already seen that when I?—~J=+yP?
—2IP+J =0, then D and 5 either both vanish or neither vanishes.
Hence the cases in the fourteenth and fifteenth lines do not occur.
Moreover, when 7=0 it is easy to see that D= —A(902—1600v%A)?2,
so that D and yP?—2IP+J either both vanish or neither vanishes.
Hence the cases in the fourth, seventh, twelfth, and fifteenth lines do
not occur either. In line eight one of the two surfaces is the surface S
itself which is cubic and not Cayley's cubic scroll. In line sixteen
the surface is S itself, which is Cayley’s cubic scroll. In both cases
there is an entire line of double points not in the tangent plane.

It is worth noticing that if none of the four quantities I2—vJ,
YP2—2IP+J, ¥YuYs —YYuw, and D vanishes, then there are three cubic
surfaces (2) which have a double point not in the tangent plane. If
exactly one of these quantities vanishes there are two such cubic sur-
faces. If exactly two vanish there is one such cubic surface. If exactly
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three vanish, there are two such cubic surfaces, one of which is .S
itself and is not Cayley’s cubic scroll. If all four vanish, there is one
such cubic surface, namely S itself, which is Cayley’s cubic scroll.
Let us now study the geometry in the tangent plane of S. It has
been shown [1] that the tangent plane intersects S in a curve with
two branches, one of which is the generator y=2=0, and the other is

1 1 1
%= — 7y + — 7498 + — (3vs0 — 10774)7*
37 +127:V+180(7 Y Yu)Y
(14)

1
— — (10vuv. 5YYuo = Yvvo)Y® "',Z=O,
360( VYo + Svy Yvo0)¥® +

and that the equation of the osculating conic of this curve is
1 1
(15) 5=Prltw—— 7yt —— (vo/7)xy = 0.

There exists a one-parameter family of noncomposite cubic curves
with a node at the origin and asymptotic tangents for nodal tangents
each of which has fifth order contact with the curve (14). The equa-
tion of such a cubic curve is

1 1
(16)  z = ka®— 5 vy® + Paty — i (vo/7)xy? + 2y = 0,

where k is the parameter. The points of inflexion of this nodal cubic
curve lie on the line

1
17 g=Pr——(r/7)y+1=0,

some one of the inflexions lying on each of the lines 3kx®=+y%. The
line (17) is tangent to the osculating conic (15) at the point whose
homogeneous coordinates are (—P, 1, 0, 0). This is the point char-
acterized above as the only double point of a cubic surface (2) which
lies in the tangent plane. It may also be characterized as the inter-
section different from the origin of the generator y=2=0 and the
osculating conic (15).

Since the point (—P, 1, 0, 0) is a double point of the cubic surface
(2), the polar quadric of (—P, 1, 0, 0) with respect to (2) must
decompose into two planes. These planes are

1
Px4+x3=0, Mx4—z—(y,,/'y)x3+Px2+x1=0.
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The first of these planes intersects the tangent plane in the generator,
and the second intersects the tangent plane in the line (17).

The nodal cubic curve (16) has sixth order contact with the
curve (14) if and only if 2=27(/v3, where © was defined in [1] as

8 2 2 2
C = [18¥Ys¥vo — 1575 — 47 Yoo — 207 (YuYo — YYuo)1/1440y .

Therefore, there exists a noncomposite nodal cubic curve, nodal
tangents being the asymptotic tangents, with sixth order contact
with the curve (14) if and only if 0. If =0, the only such cubic
decomposes into the generator ¥y =2=0 and the conic (15) which then
hyperosculates the curve (14).

If we do not insist that the nodal tangents be the asymptotic
tangents, we can prove that there exists a one-parameter family of
cubic curves with a node at the origin and sixth order contact with
the curve (14). The equation of such a cubic curve is

1 1
5= (EP + B3 — — vy + [P 2 Em/w] sty
(18) 3 4

1 1
- [? Ey + 7 (w/'y):l xy? + Ex?+4 xy = 0,

where £=27/v® and E is the parameter. The nodal tangents are
(19) x =0, y = — Ex,

and the line of inflexions is

(20) (4E** + 12Py)x + (8Ey* — 3v.)y + 12y = 0.

As E varies this line of inflexion envelops a conic which turns out to
be precisely the osculating conic (15), which thus receives another
geometrical characterization. Moreover, the nodal tangent y+Ex =0
intersects the line of inflexion (20) in the point whose homogeneous
coordinates are (4E*>y?*—3E«y,—12Pv, 12y, —12E¥, 0), the locus of
which as E varies is also the osculating conic (15).
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