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1. Introduction. In the present paper we propose to discuss cer­
tain aspects of the theory of lifting surfaces in non-uniform motion. 
Briefly, lifting surface theory is concerned with the motion of an 
impenetrable, deformable surface through an incompressible or com­
pressible non-viscous fluid. In general the impenetrable surface is in­
tended to represent approximately an airplane wing, a tail surface, or 
a propeller. The adjective lifting indicates the nature of the inter­
action desired between the impenetrable surface and the surrounding 
fluid. 

The mathematical nature of the problems arising in this theory is 
that of boundary value problems of partial differential equations. Our 
principal object here is formulation of these boundary value prob­
lems and presentation of some of the methods, exact or approximate, 
which have been used in the solution of some of these problems. As 
may be seen from the list at the end of this paper the amount of 
work done in this field is considerable and the following account is 
restricted to those aspects of the theory which have been of particu­
lar interest to the writer. 

Lifting surface theory as developed may be designated as a per­
turbation theory in the following sense. Because of the assumption of 
no viscosity there are evidently types of motion of an impenetrable 
surface which proceed without disturbing the surrounding fluid at 
all. One now asks for such motions which proceed nearly without pro­
ducing any disturbances and one uses the assumption of small dis­
turbances to simplify the differential equations and boundary condi­
tions of the theory. In general this simplification leads to a linearized 
theory and it is this linearized theory which will here be discussed. 
The main reason for the considerable literature on the subject is the 
fact that the range of applicability of the linearized theory has been 
found adequate for many problems arising in engineering, and in 
particular in aeronautical engineering. 

Evidently one may, if one wishes, consider separately problems of 
uniform and non-uniform motion in lifting surface theory. Histori-
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cally, uniform-motion theory, as initiated by Prandtl, precedes non­
uniform motion theory by about ten years. Solution of problems of 
non-uniform motion theory has turned out to be of considerably 
greater mathematical complexity than solution of uniform-motion 
problems. 

In what follows we shall formulate the problems of non-uniform 
motion in somewhat greater generality than has heretofore been done. 
After this we shall discuss in some detail various aspects of the theory 
of nearly plane lifting surfaces in incompressible flow, and in particu­
lar the step from two-dimensional to three-dimensional theory. 

<*Xr 

Fig. 1 

2. The general problem. The actual problem of linearized lifting 
surface theory will be considered as an approximation to the following 
nonlinear problem. An impenetrable, deformable surface of given ex­
tent moves in a prescribed manner through a compressible perfect 
fluid. From part of the edge of the impenetrable surface emanates a 
surface of velocity discontinuity in such a manner that the fluid 
velocity remains finite along this part of the edge,1 henceforth called 
the trailing edge. Along the remainder of the edge, called leading 

1 This condition of finite trailing edge velocity, first introduced in two-dimensional 
airfoil theory by Kutta and Joukovsky in order to obtain a definite lifting action, was 
subsequently found to represent rather well the effect of viscosity of actual fluids in a 
perfect-fluid theory of airfoils. The fact that in a three-dimensional theory enforce­
ment of this condition necessitated introduction of a trailing surface of discontinuity 
was first observed by Prandtl. 
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edge, the fluid velocity will on account of the sharpness of the edge 
in general assume infinite values for an incompressible fluid. For a 
compressible fluid the assumption of a sharp leading edge will in 
general make impossible a continuous solution in the region exterior 
to the surfaces of discontinuity. We need not for the present pur­
poses consider this difficulty as it disappears in the linearized form 
of the problem. 

Let X, F, Z be the axes of a fixed frame of reference and let x, y, z 
be the axes of a frame of reference moving with the impenetrable 
surface (Fig. 1). Let U(t) be the velocity of the origin of the moving 
system with reference to the fixed system and let (ù{t) be the angular 
velocity of the moving system with reference to the fixed system. 
Let ur be the velocity of a fluid particle relative to the moving system 
and let u be the velocity of the same particle relative to the fixed 
system. The velocity vector u may be written in the form uo + tf», 
where UQ exists without being caused by the presence of the impene­
trable surface and where u, is induced by the motion of the im­
penetrable surface. Correspondingly we have a pressure p^po+p* 
and a density p=po+p*. 

We then have the following kinematical relations involving veloc­
ity u and acceleration a 

(1) u = ur + U + ca X r, 

(2,) a = (du/dt) + urVu + <ù X u. 

The differential equations of the problem are of the following form 

(3) pa + Vp = 0, 

(4) (dp/dt) + v-(pur) = 0, 

(5) P - / ( P ) . 

Equations (3) to (5) are to be solved in the space exterior to two sur­
faces FL = 0 and FT = 0, where FL represents the given surface of pres­
sure and velocity discontinuity and where FT represents a surface of 
velocity discontinuity, determination of which is part of the problem. 
On FL we have the condition of no relative normal flow. On FT we 
have the two conditions that the normal velocities of points of the 
surface are given by the corresponding velocities of the surrounding 
fluid and that the pressure is continuous across this surface. Thus 

(6) FL(x, y, z, /) = 0; dFL/dt + urVFL = 0, 

(7) FT(x, y, z, t) = 0; dFT/dt + ur±'VFT = 0, p+ = p__, 

where the subscripts + and — distinguish the two sides of FT* 
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The surfaces FL and FT are connected along a line CT which is part 
of the edge of FL — 0 and which is sufficiently described for the pres­
ent purposes by the designation "trailing" edge. Along CT we have 
the additional condition that u remains finite. 

In addition to the boundary condition (6) and (7) and the trailing 
edge conditions there are needed conditions at infinity. The form of 
these conditions will evidently depend on the form of the motion and 
on whether the fluid is compressible or incompressible. 

For incompressible flow these conditions are roughly vanishing of 
all disturbances at an infinite distance from lifting surface and trail­
ing surface. For compressible flow no such general statement can be 
made. In some cases all that is required is to superimpose on the 
conditions for imcompressible flow a condition stating that radiation 
energy is not created or reflected at infinity. In other cases the dis­
turbances caused by the motion of the lifting surface cannot be re­
quired to vanish at infinity. General determination of these condi­
tions is outside the scope of this report. 

When the velocity distribution Uo which exists without the pres­
ence of the surface FL is such that VX 1*0 = 0, equations (3) to (5) 
may be reduced to one scalar equation by means of the introduction 
of a velocity potential <j> which, for incompressible flow, satisfies the 
Laplace equation but which for compressible flow is of a more general 
type. 

We postpone here introduction of the velocity potential and first 
linearize the problem. 

3. The linearized form of the general problem. Basic assumption 
for a linearized theory is that the lifting surface moves through the 
fluid nearly without disturbing the fluid such that powers and prod­
ucts of the quantities u», p» and p,- and their derivatives may be neg­
lected. 

The equation of motion (3) becomes then 

dUi/dt — ( U+ <Ù X r)-Vui + iùX Ui+ Ui'Vu0+ u 0 Vu* 
(8) 

Vpi Vpo Pi 

Po Po Po 

The equation of continuity (4) becomes 

(9) (dpi/dt) + V(poUi) + V[(u0 - U - <•> X r)Pi] = 0 

and the equation of change of state becomes 

(10) Pi - /'(PO)P.-. 
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We shall in some of what follows write as abbreviations 

(11) f'(po) = <h, C / + c o X r = y . 

The quantity do is the velocity of sound at a point of the undisturbed 
medium. 

Turning now to the boundary conditions (6) and (7) we begin by 
establishing the condition for the motion of a surface FLP = 0 without 
any disturbance of the surrounding fluid. Equation (6) indicates that 
this condition is as follows 

(12) dFLP/dt + (uo - V)-VFLp = 0. 

We have chosen the subscript P to indicate this surface because 
we wish to refer to it henceforth as the projection of the lifting sur­
face. As the actual lifting surface must deviate only slightly from this 
projection in order to move nearly without causing disturbances we 
may write 

(13) FL~FLP + fL~0 

where ƒ& is small in the same sense as a*, pt-, and pi are small. Then, 
considering (12), and except for quantities small of higher order, the 
boundary condition at the lifting surface becomes 

(14) FLP = 0; dfL/dt + («o - V) • V/L + uvVFLP « 0. 

Note that in satisfying the boundary condition at the projection of 
the lifting surface rather than at the lifting surface itself we again de­
pend on the perturbation properties of the solution to be obtained. 

The next step is the determination of the form of the trailing sur­
face of discontinuity FT- AS the equation of this surface is one of the 
unknowns of the problem we must, in order to have a linear prob­
lem, omit the term u» in (7) and the shape of FT is then such that 
the equation 

(15) dFr/dt + ( u o . - V)VFT » 0 

is satisfied. In addition to this we have the condition that at the 
trailing edge CT the surface FT is connected to the surface FLP* The 
meaning of (IS) is that within the linearized theory the shape of the 
trailing surface of discontinuity is independent of the velocity dis­
tribution Ui induced by the motion of the lifting surface. 

Having the equation of FT we then obtain from (17) the two condi­
tions of continuous normal velocity and pressure across the surface 
in the form 

(16) FT = 0; (u<+ - UiJ)VFT = 0, p+ - p„ = 0. 
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To the formulation of the problem as contained in equations (8) 
to (16) we must add the condition of finite u» along CT and appropri­
ate conditions at infinity. 

We remark that previous formulations of this problem of non-
steady motion in their most general form are based on the assump­
tions uo = 0, co = 0, U=Ui. Under this assumption, and under the 
additional assumptions that dll/dt = 0 and dFLp/dt = 0, Kuessner 
[44]2 has obtained an integral equation for the pressure distribution 
at the lifting surface. 

4. Velocity potential formulation of the linearized problem. In what 
follows we shall assume that the fluid is at rest except for the motion 
induced by the lifting surface, that is, we put 

(17) u0 = 0, Vp0 = 0. 

With these assumptions we have the existence of a velocity potential 
<t> in terms of which 

(18) Ui = V<*>. 

Combination of (18), (17), and (8) gives for the pressure pi the fol­
lowing expression 

(19) Pi/po = ( U + co X r ) • V<t> - d<j>/dt • 

Combination of (19), (11), (10), and (9) gives the following differ­
ential equation for c/>, 

(20) V20 - (l/<zo) [d/dt - ( U + (Ù X r) • V]2 <f> = 0. 

The boundary condition (14) becomes 

(21) FLP = 0; — \VFLP\ = ( ! 7 + G > X r ) . V / L ~ — • 
dn dt 

The transition conditions (16) become 

(G-) - (?) • 
\dn/+ V w _ 

(22) FT = of"—- ( I 7 + G > X r ) v J 
I Ld* J+ 

2 Numbers in brackets refer to the references cited at the end of the paper. 
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and the trailing edge condition is that along CT we have V<f> finite. 
The problem from here on is the solution of the mixed boundary 

value problem (20) to (22), with appropriate conditions at infinity. 
The object of such solutions is primarily the determination of the 
pressures pi on both sides of the lifting surface. 

Solutions obtained so far are all for nearly plane lifting surfaces 
such that FLP^Z = 0. Predominant among these are solutions for the 
two-dimensional problem, which may be characterised by the re­
quirement that d(j>/dy^0. 

For two-dimensional incompressible flow essential contributions 
are due to H. Wagner [78], W. Birnbaum [3], H. Glauert [22], T. 
Theodorsen [73], H. G. Kuessner [42], P. Cicala [7], and G. Ellen-
berger [14]. 

For two-dimensional subsonic compressible flow which is less com­
pletely solved than the problem of incompressible flow, one must 
mention the work of C. Possio [53], R. Timman [75], D. Haskind 
[24], and that given in [60 ]. Various approximate methods for the 
solution of Possio's integral equation of the problem are described in 
[39]. 

The corresponding problem in the supersonic range has been dealt 
with by Possio [52], S. von Borbely [6], H. A. John and G. Temple 
[72], I. E. Garrick and I. Rubinov [19], and I. A. Panichkin [Si]. 

The perturbation theory of non-steady two-dimensional transonic 
flow has recently been considered by C. C. Lin, H. S. Tsien and the 
writer [47]. 

In the three-dinensional theory one has the solution of Schade and 
Krienes [41, 62] for the lifting surface of circular plan-form in in­
compressible flow and, also for incompressible flow, a number of de­
velopments for an approximate analysis of the three-dimensionality 
of the flow for surfaces whose span is appreciably greater than their 
chord. We shall in what follows describe a particular approach to this 
problem based on earlier publications on this subject [56, 57]. A dis­
cussion of various other methods of analysis for this problem by 
Cicala [8, 9] , W. R. Sears [69], R. T. Jones [32, 33], and Kuessner 
[44] can be found in [56]. 

Finally, we mention work by Garrick and Rubinov [20 ] and by 
E. A. Krasilschikova [40 ] on three-dimensional supersonic flow and 
a forthcoming publication on three-dimensional subsonic flow [59]. 
In both problems it appears that further work is required before all 
difficulties inherent in the problem are overcome. 

5. Motion of nearly plane lifting surface in incompressible flow. 
Further discussion will be carried out for this subclass of the general 
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problem. Our object is to indicate the particular nature of the bound­
ary value problem in question and to outline one of the possible meth­
ods of solution. 

We assume that the projection of the lifting surface lies in the 
x, y-plane and that the motion of the lifting surface is in the direction 
of negative x. We further assume incompressible flow. We have then 

(23) U = - Ui, co = 0, a0 = oo 

and, in accordance with (12) and (15), 

(SX- (2). 

Fig. 2 

We shall designate the region occupied by the projection of the lifting 
surface by RL and the region occupied by the trailing surface of dis­
continuity by RT (Fig. 2). 

From (20) follows that when ao=<» the differential equation is, 
for steady as well as for nonsteady motion, 

(25) Vfy = 0. 

From (19) follows, for the pressure induced by the motion of the lift­
ing surface, 

(26) 
po \dt dx/ 

If the instantaneous distance of a point of the lifting surface from 
the x, y-plane is designated by Z(x, y, t) we have FL = FL+fL 

= z — Z(x, y y / ) = 0 . Consequently the boundary condition (21) be­
comes 

(27) xy y inside RL: 
d<t> dZ ÔZ 
— = 1_ u — s Wht 

dz dt dx 
The transition conditions (22) become 



i949l BOUNDARY VALUE PROBLEMS IN AERODYNAMICS 833 

(28) x, y inside RT 
\dz)+ \dz/J 

/d<t> d<t>\ /d<t> d < A 
( —+^7—) = ( — +U — ) . 
\dt dx/+ \dt dx/-. 

To equations (27) and (28) is to be added the condition of finite trail­
ing edge velocities 

(29) z = 0, x = xT(y) ; V<f> finite 

and conditions at infinity which for incompressible flow may be taken 
in the form 

X = — oo ( dó dó 
(30) ^ = 0, - + t / - = 0. 

z = ± oo ^ dt ax 

The above problem is to be understood as a boundary value prob­
lem for the exterior of an infinitely thin semi-infinite tube surround­
ing the regions RL and RT, in the sense that (27) holds for 3 = + 0 
and for z = — 0. I t may be recalled that the main object is the deter­
mination of pi+ and pi- in RL, with pi-—pi+ being the lift intensity 
produced by the motion of the impenetrable surface FL. 

The form of the boundary conditions (27) to (30) is such that the 
problem for the exterior of the semi-infinite tube may be transformed 
by a symmetry consideration into a mixed boundary-value problem 
for one of the half spaces z>0 or z<0. This is done by observing that 
equations (27) and (30) are compatible with the assumption that $ 
is an odd function of z. If we define a region RR as the x, ^-plane 
minus the regions RL and RT and take into account that <j> is continu­
ous except across RL and RT we may replace the boundary conditions 
(27) and (28) by the following system of conditions at 3 = 0: 

d<t> 
f x, y inside RL: — = WL, 

dz 

(31) x, y inside RT: \- U— = 0, 
dt dx 

{ x, y inside RR: <j> = 0. 

We then must determine <j> in one of the half-spaces, say 2 > 0 , with 
the conditions (29) and (31) at the boundary z = 0 and with equations 
(30) giving the conditions at infinity. 

Let us remark that explicit solutions of the problem thus formu­
lated are possible in the two-dimensional case by the use of elliptic 
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cylinder coordinates, while for the circular plan form wing the use 
of spheroidal coordinates is appropriate [41, 62]. The problem would 
be of a standard nature if the conditions in RT were the same as in RR. 
The main difficulty of obtaining an explicit solution comes from the 
particular form of the boundary condition holding in RT inasmuch as 
all that can be said on the basis of (31) about the values of <j> in RT is 

x, y, 0, /) = $(x - f Udt, y J (32) * ( 

where $ is an arbitrary function of its two arguments. Compensating 
for this arbitrariness is, as will be seen, the finiteness condition (29). 

6. Integral equation formulation of the problem. As one is inter­
ested primarily in the values of pi in RL it suggests itself to derive an 
integral equation for this quantity. This procedure, adopted by Birn-
baum [3], Possio [53], Kuessner [42], and others at the suggestion of 
Prandtl, and known under the name acceleration potential method, 
has the advantage that it can be developed without explicit introduc­
tion of the trailing surface of discontinuity. I t does however have the 
disadvantage of leading to an integral equation with a distinctly 
more complicated kernel than the corresponding integral equation for 
the values of d<f>/dx in RL which we propose to discuss here. The main 
advantage of the latter formulation is that it permits immediate 
recognition of the explicit solvability of the problem of non-steady 
motion in terms of the solution of the corresponding problem of 
steady motion. 

Setting as an abbreviation 

(33) y(x, y, t) = d4>(x, y, 0, t)/dx 

we have the following representation for d<j>/dx in terms of the bound­
ary values 7, 

d<l> - 1 r C d / l \ 
(34) = 7 f t f „, ,) - ( - )<% 

dx 2ir J J dz\r / 

where 

(35) r2 = (* - £)2 + (y - v)2 + z\ 

Equation (34) may be converted into an expression for d<f>/dz> by ap­
propriate differentiation and integration, of the following form 
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(36) 

- € 

dyl(y - vY + zA f / J / 
Note that when dy/dri=0 which corresponds to the assumption of 
two-dimensional flow the ij-integration in (36) can be carried out with 
the result tha t 

d*(x, z, t) _ _ J_ r 7(fc t)(x - Q 

ÔZ ~ X J (* - | ) 2 + Z2 ( 3 6 / ) " ' " - - - " 1 • . < * £ 

which equation can of course be obtained directly in a simpler man­
ner. 

To separate two-dimensional from three-dimensional effects the 
following transformation is useful. We write (omitting for brevity 
the t in 7) 

(37) 7 & 1?) = 7tt, y) + [y& v) - 7tt, y)L 

Appropriate integration by parts then gives the following relation 

02 7T J ( * - £) 2 + 22 

(38) _J_rpJ : | y - , (flZJ + A 

(* - £)2 + *2 \ r | y - 7? | / ƒ 

We must now in equation (38) let z tend to zero and substitute the 
boundary conditions (31). I t is advantageous that (38) is in such a 
form that, as can be proved, the two limiting processes of integration 
and of letting z tend to zero can be interchanged, provided the inte­
grals are defined where appropriate as Cauchy principal values. Thus 
from (31) and (38) 

1 ƒ.**<»> 7(£, y, 0 Jy 1 r00 7rtt, y, 0 ,„ 
WL(S, y, 0 = I — d£ I —-ai 

(39) - — l' I - ^ +K(x-S,y- v)}d&i 
IT J J RL drj \y — rj ' ƒ 

- ; r f f ^ ( ^ + * ( * - * . y- i)W* 
2wJ J R drj {y — ri ) 
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In (39) XL and XT indicate the coordinates of the leading and trailing 
edge, yr is still to be determined as far as possible from the boundary 
conditions and K is of the following form 

((* - Ö2 + (y - n)2)x / 1 - I y - n I 
(40) K = 

(y - i?)(* - Ö 

We shall from now on assume for simplicity's sake that the region 
RL is the rectangle \x\ ^b, \y\ ^sb and that the velocity U which 
occurs in (31) is constant. We further introduce dimensionless vari­
ables, 

(41) x' = x/b, y' = y lb, t' = a>t 

and a dimensionless parameter k of the form 

cob 
(42) k = — • 

U 
For the case of simple harmonic motion k is referred to as the "re­
duced frequency" of the motion. We may again for simplicity's sake 
omit in what follows the primes designating the dimensionless vari­
ables. 

We then have from (32) that 

d(£ - t/k) 

Furthermore on account of the finiteness condition (29) 

(44) $(1 - t/k, y) = ƒ y(x, y, t)dx m T(t, y). 

Then 

(45) *(* - t/k, y) » r ( / - * « - 1), y) 

and with 

(46) * - * ( { - 1) = r, d(ki -f) = -dr 

we have from (43) 

dT(r, y) 
(47) 7 r ( € , y , 0 = - *• 

dr 

We introduce (46) and (47) into (39) and obtain the following form 
of the integral equation of the problem 
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7T J - l ff — 

+ 
i /•« ar 

w J -,00 dr 

dr 

(48) 
2 T . 

(* - 1) - (* - r ) / * 

r T"i +K(x-!;,y- Sd&v 
\TrJ-*J-.idri\y — y} ) 
l /•• /•« d2r r l 

2ir J_« J_oo ch?#T l y — rç 

+ # ( * - 1 — , y - v)\d£dr. 

For uniform motion we have dT/dr — O and the second and fourth 
integrals in (48) are absent. The form of equation (48) indicates 
clearly the manner in which for non-uniform motion the values of the 
solution y(x, y, t) depend on the past history of the motion through 
the cumulative effect of successive changes of 

(49) T(r, y) = J 7O, y, r)dx. 

The quantity T is one-half of what is usually referred to as the cir­
culation intensity at a station y = const, of the lifting surface. 

Equation (48) is now to be solved for 7, in terms of WL and T. Once 
this is done T is found by integration in terms of WL and therewith 7 
is expressed in terms of WL only. The pressure pi at the lifting surface 
is then, according to (26), of the form 

(so) i£--[*i(£T****)+ir(**4 
The advantage of (48) compared with the corresponding equation 
for the values of pi lies in the form of the kernel l/(#—£) in the first 
term. This permits solution of (48) in a manner analogous to what is 
done for the problem of uniform motion. 

7. Solution of the two-dimensional problem. In what follows we 
wish to describe briefly one of the possible methods of solution of this 
problem, namely that by L. Schwarz [67]. We shall subsequently 
indicate how to utilize this method for an approximate solution of the 
three-dimensional problem. 

Introducing the (unessential) restriction of simple harmonic motion 
we set 
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(51) wL = wLeu
t y = yeu, T = Teu 

where the barred quantities are functions of the space coordinates at 
most. Equation (48) can then be written in the following form 

(52) * L ( X ) - - _ | J ^ - i + _ r | — - a . 

Equation (52) is solved by means of a pair of inversion formulas of 
the form 

(53a) g(x) = - ^ - dt, / ( l ) finite, 
T J - l X — £ 

which may be considered as a result of two-dimensional potential 
theory, as discussed most fully by H. Söhngen.3 

Application of (53) to (52) leads to the following expression for y 

(54) 

+ «rX(?rT) Try «} • 
The main difficulty from here on is the calculation of the pressure 

pi which according to (50) is given by 

(55) - ^ = - [«* ƒ "f «)# + <?(*)] . 
Before listing the result of this lengthy and somewhat devious cal­
culation we may indicate the nature of the equation for T which occurs 
in (54). If we integrate both sides of (54) as follows: 

(56) 
•0-7.U—«) LI,(T77) —J"8* 

+ 7 Jx \i-1) U-Ai + x) x-tV 1 ** 

and take account of the formulas 

z * 1 / ! - *Y/2 dx ! , 
(57a) I (——) - = - x. U < 1, 

« Math. Zeit. vol. 45 (1939) pp. 245-264. 
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r1 /1 - A 1 / 2 àx / /s - iy / 2 \ 
(57b' fJj+ù—r-'V-iird)-
then equation (56) can be written one of the forms 

ƒ i / i 4 . t \ 1/2 
( — ) * , « » 

- ikeikT f " ( ( ^ — ) - l ) «-'»«#, 

1 ^ { , 

(58) 

(59) r = 

rvn-sv'2 

i+tfc<* r ((-—j -1v«*«j 

It is at this stage that a combination of Bessel functions makes its 
appearance in the theory. The integral in the denominator of (59) 
is expressible in terms of Hankel functions, as follows: 

, n-(ffi)>-« 
= l.[H?\k) + iHl2\k)] + 

2 ik 

In view of (60) F can be written in the alternate form 

(6i) r - ' J - V l - « / 

2rHkeik[H?\k) + iH?\k)] 

Our purpose in outlining in some detail the steps leading from (52) 
to (61) has been to indicate the nature of some of the more simple 
transformations in the calculation of the pressure distribution on 
oscillating airfoils. Considerable care is necessary to arrange the 
analysis in such a manner that advantage is taken of all possible 
simplifications. In this way there is found the following expression 
for pi of equation (55) 

i i r 1 / / 1 - A I / 2 / I + £Y / 2 i \ 

/ l - *\1/2 f V l + SV'2 (62) " ü 

C(k) - 1 / 1 - af 
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In (62) the function A is given by 

(63) A(x, Ö - — In ^ — : J—± fjL_ 

2 i - *s - (i - xy\i - eyn 

and the function C, first introduced by Theodorsen [73], is of the form 

(6i) C(k) " H*\k) + W?\k) ' 

The results outlined in this section find their main application in 
the analysis of airplane flutter.4 For this purpose explicit expressions 
have been obtained by Cicala [7], Kuessner [42], Theodorsen [73], 
and others for lift and moment amplitudes L and Ma defined by 

(65a) Z = lb \ pidx, Ma = 2b2 f (* - a)fidx 

and for control-surface hinge moments M0 defined by 

(65c) Mc = 2b2 f (x - c)pidx 

for various appropriate forms of WL-
Plots of representative pressure distributions for various values of 

the reduced frequency k and for some of the more important forms of 
WL may be found in a recent paper by Postel and Leppert [55]. 

We may conclude this section with some remarks concerning the 
solution of the problem for non-oscillatory motion. 

I t may readily be seen that the results for simple harmonic motion 
may be used for Laplace transform analysis by replacing wherever it 
occurs ik by — q whereupon equations (61) and (62) become relations 
between Laplace transforms. For applications of the Laplace trans­
form method in this field reference may be made to work by I. E. 
Garrick [17, 18] and W. R. Sears [70]. 

Another form of the results consists in integro-differential equations 
for T, L and Ma, without any assumption concerning the form of the 
solution. The nature of these results may be seen from the simplest 
of them, the equation determining T. Omitting all but the first two 
of the integrals on the right of (48) we may obtain the following rela­
tion 

4 Briefly, the problem of flutter is the determination of those flight speeds at which 
self-sustained oscillations of a component of the airplane become possible due to the 
aerodynamic forces produced by an oscillatory motion of this component. 
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•1/1 + *Y/2 

WL(X, t)dx ix^y 
(66) 

1 f1 / rI/1 + *Y/1 dx X 
r J _i ' I J-Al — x) % — é 

+i f £./ f Vi±*y"— t t—u. 
TT J-oo^r I J - i \ l - * / a - 1 - (/ - r)/k) 

After evaluating the inner integrals on the right of (66) we are left 
with an equation of the form 

(67) 

r< dr r/t - T + 2£\1/2 1 
m+L*-[(-nrr) ~T 

r1 /1 + *\1/2 

— — I I J wL(x,t)dx., 

A formal solution of (67) by Fourier series or Laplace transform 
methods is again readily obtained. A special case of such a solution 
is given by (61). Practical applications, especially of the Laplace 
transform solution, are however not a simple matter, the reason for 
this being the occurrence of Hankel function combinations in the 
denominator of the transforms to be evaluated, and the possibility of 
solving (67) directly by machine methods would be of considerable 
advantage. 

8. Remarks on the problem of tunnel wall interference in the two-
dimensional theory. A further problem of some interest concerning 
the two-dimensional theory of oscillating airfoils is the effect of tun­
nel walls on the pressure distribution pi. For a wing of chord 26 
located at the center of a tunnel of height 2h one finds, using the 
method of images, that (52) is replaced by the following equation [58] 

(68) wL 
1 cl \y(&dÇ ^ « r ° ° X^*(1~°^ 

(x) = — I «L. T* I 
T J _ i sinh [\(x — £)] * J i s i n h [X(# — £)] 

where the parameter X is given by 

(69) X = wb/2h. 

Equation (69) may be transformed into an equation of the form (61) 
by means of the following substitutions5 

5 Thîs transformation has been used in a study of the corresponding problem of 
steady flow, where the second integral on the right of (68) is absent, by L. Lees and 
H. S. Tsien, Journal of the Aeronautical Sciences vol. 12 (1945) pp. 173-187, 202. 
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(70) KZ = tanh \x, *f = tanh X£, K = tanh X. 

The result is of the form 

W*L(Z) 1 f 1 7*tt) d? WL\Z) l C ^ 

(1 ~ KV)1'2 7T J - l (1 - KV)1'* Z - f 

ik r v* exp { i t [ l - (tanh-1*?)A]} 
+ 7 Ji (i - K^y* (z - r) Jr' 

The solution of (71), which involves elliptic integrals, has not yet 
been given. An approximate solution, valid for sufficiently small 
values of X, has been obtained in the following way [58]. We set in the 
interval |f| ^ 1 

X 1 X2 

(72) « (* - Q. 
sinh \(x — £) x — £ 6 

The limits of integration in the second integral on the right of (68) 
preclude the direct use of (72). This difficulty is overcome by writing 

ƒ, i sinh [\(x — £)] 
(73) 

= I + I eiH ft 
J l x — £ J i Lsinh [X(# — £) J # — £ J 

and by splitting the second integral on the right of (73) into two 
integrals as follows, / f = ƒ" — /J. The integral ƒ" leads to the function 

(74) ƒ (M) = f °° e-** ( ——) dx 
J o \x smh x / 

which has been tabulated. In the integral fl one may introduce the 
approximation (72). In this way the following approximate equation, 
which takes the place of (68), is obtained: 

WL(X) = I -\— r I rff 

X2 ( r1 _ r i - ««a-*) ~n 

(75) +^:{j ?tt)(*-0# + r L—^—+ (i-*)Jj 
ik. 

+ 

I t is of some interest to observe that the effect of the presence of tun-
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nel walls may, for moderate values of k, be appreciably larger than 
the corresponding effect in the steady-state solution for which k=0. 
I t was found in one representative example that when & = 0.25 the 
wall effect was twice what it was when k = 0. This increase of the wall 
effect will occur when at the same time k is (1) large enough for the 
trailing surface of discontinuity to be of importance and (2) small 
enough for the characteristic wavelength in the trailing surface of 
discontinuity to be appreciably greater than the wing chord. 

9. Approximate theory for lifting surfaces of finite span. We now 
propose to discuss a method of approximate solution of the integral 
equation (48) for three-dimensional flow from the following point of 
view. Our object is to reduce (48), which contains double integrals, to 
such a form that a solution of single integral equations only is re­
quired. We shall show that this is possible, provided the "aspect ra­
tio" s is sufficiently large, in such a way that what remains to be found 
is the solution of a problem of the kind encountered in the two-di­
mensional theory and the solution of a problem of the kind encoun­
tered in the determination of the spanwise lift distribution for a wing 
in uniform motion according to Prandtl 's lifting-line theory. In this 
analysis we shall restrict attention to the case of simple harmonic 
motion in the sense of (51). Equation (48) then assumes the following 
form 

WL(*, y) = I d£ H V(y) I — 
oo eik(l-t) 

(76) 
2w J s J -ldrj \y — rj J 

ik r* r™ dY ( 1 
+ — I I «<*(!-«><{ 

2T J S J l drj \y — y 

dl-dr] 

}• + K(x - f, y - ri)>d£dri. 

Our first step is to observe that the function K as given by equa­
tion (40) behaves, for | (x-£)/(y-ri)\ « 1 , like 2-1(*-£)/|;y---*?| 
* (y "~ v) a n d is therewith in this region small compared with the remain­
ing part of the kernel, l/(y — rj). If it is now assumed that l<Ks, then 
K is small compared with l/(y — rj) over most of the region of integra­
tion and may over this part of the region be disregarded. There re­
mains the immediate neighborhood of the line rj=y where this order 
of magnitude relation does not hold. In order to disregard the con-
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tribution due to K in this region it is observed that K is an odd 
function of y — rj and that we expect dy/drj to be a slowly varying 
function of rj. In view of this we expect the contribution due to both 
K and (l/Cy — y) to be negligible. We thus assume that 

(,„ f f ^ + £ u » r ri5*L 
J _* J - i drç (y — 77 ; J __, J _i cfy y — tj 

and assume that the approximation is justified for "sufficiently" large 
values of s. 

Obviously the above argument is not very satisfactory, from a 
mathematical point of view, but no more rigorous argument has yet 
been given to justify this, from a practical standpoint rather satis­
factory, result. Possibly, equation (77) represents the first step in an 
asymptotic development in powers of 1/s but this has not yet been 
proved. 

The argument leading to (77) cannot directly be applied to the last 
integral in (76) since in this integral we do not have the fact that 
J (x— %)/(y — rj)\ is small compared to 1 over most of the region of 
integration. We proceed instead as follows. Write, with £ — #=X, 

J i \y — v ) J x J x 

(78) = f «TUCX+.J K{\ y-v)\d\ 
Jo \y — v ) 

_ ƒ e-iH | _ _ + K(x - {, y - *) j dl 

In the second integral on the right we can again neglect the contri­
bution due to K, and thus we may write 

f'^^r, + '} 
g-ik _ 

(79) - " • • ik(y~v) 

+ e-^ f W-JL - fr' + fr-w-lr-'lu 
Jo [y — y (y — rj)\ ) 

In view of (79) we now define a function F by the relation 

and combine (77), (79), and (80) in order to obtain from (76) the 
following approximate integral equation of the problem: 
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wL(x,y) = I — + — T(y) I -dÇ 

(81) JL 

2TT 

Equation (81) is the result which it was intended to obtain. The 
solution of (81) proceeds as follows. One first obtains y(x, y)f just as 
in the two-dimensional theory except that now y also depends on 
dT/drj. One then obtains, by integration of 7, an equation for the 
determination of T which is, as was previously stated, of the type 
of the equation for the determination of the spanwise lift-distribution 
for a wing in uniform motion according to the lifting-line theory. 
Finally, just as in the two-dimensional theory, an expression is ob­
tained for the pressure distribution pi. 

It is readily shown, for instance by the procedure leading from (66) 
to (67), that the equation for T is of the following form: 

(82) T(y) + M(*) f * — I—Î— - ikF[k(y - , ) ] } dr, = T™(y) 
J _, dri Ky — v J 

where F(2) is the value of Y according to the two-dimensional theory 
as given by (61) and where the function ju is denned by 

/o(*) - iJi(k) 
(83 ) Kk) = ,*[*.W(*) - ™?\k)] ' 

An equation corresponding to (82) had been obtained by Cicala 
[9] on the basis of entirely different considerations involving the ef­
fect of lifting lines and horseshoe vortices. Equation (82) as it stands 
is different from Cicala's to the extent of a difference in the expres­
sion for ix. It turns out that Cicala's result can be obtained from (81) 
by omitting the factor e~ikx in front of the last integral in (81). In aero­
dynamical language this means that "the downwash induced by the 
spanwise variation of circulation" is assumed uniform across the 
chord. This is indeed correct, as has long been known, for the case of 
uniform motion for which k = 0. Evidently lifting line considerations 
do not permit us to determine the chordwise variation of downwash 
referred to above and in this respect the integral equation method as 
outlined goes further. 

Further work along the lines indicated leads to the result that the 
effect of three-dimensionality of the flow as determined by the fore­
going approximate theory may be incorporated into equation (62) for 
the pressure distribution pi of the two-dimensional theory by merely 
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changing the function C(k) into C(k) +<r. The term <r depends on the 
data of a given problem in the following manner: 

} Lr<«(y) J L Mk) - umi 

The foregoing theory, up to equation (83) and including expres­
sions for lift L and moment "Ma as defined by (65a, b), is essentially 
that of [56]. In this reference there are also included discussions of 
earlier work of a related nature by R. T. Jones [33], Kuessner [44], 
von Borbely [5], and Sears [69]. Extension of the theory to surfaces 
of non-rectangular plan form and modification of pi by means of the 
function a was first presented in [57]. Prior to this M. W. Hunter had 
established that the results of [56] permitted incorporation of the 
effect of finite span into the expressions for L, Mai and Mc by means 
of the function a [26]. 

A considerable simplification of the present developments as com­
pared with those in [56] and [57] is due to the fact that the basic 
integral equation of the problem is here taken in the form (76), 
which is a direct consequence of (38), rather than in that form which 
corresponds to equation (36). 

Methods of analysis and numerical examples of application of this 
theory may be found in [61 ]. I t may further be mentioned that the 
analogue of equation (81), for subsonic compressible flow, has re­
cently been obtained [59]. 

A shortcoming of the approximate theory as discussed is the fol­
lowing. One would expect from an exact solution of the problem that 
the pressure pi tends to zero, and therewith also circulation T, lift L, 
and moments My as the tip sections are approached. This is indeed the 
case for lifting surfaces with zero tip chord, such as the elliptical sur­
face. For lifting surfaces with finite tip chord, such as the rectangular 
surface, one finds however that only Tup vanishes as it should whereas 
Ltip and ikftiP, while smaller than according to the two-dimensional 
theory, can not in general be made to vanish. The reason for this 
difficulty is to be found in the form of the approximate equation (81) 
in which the effect of spanwise variation of 7 appears solely by way 
of the average T of 7. A more refined approximate theory undoubtedly 
requires inclusion of the effects of weighted averages of 7 as well, 
such as fiixydx and flxx

2ydx, in the integral equation of the problem. 
With such a refined theory one has reason to expect that tip condi­
tions can be satisfied to a greater degree of approximation than by 
the present theory, in particular, it will be possible to insure that Ltip 
and ikftip vanish. 
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Development of such a refined approximate theory is believed to 
be one of the worthwhile future tasks in this field. An application of 
this thought to the problem of uniform motion may be found in a note 
in Proc. Nat. Acad. Sci. U. S.A. vol. 35 (1949) pp. 208-215. 
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