A CONVEX METRIC FOR A LOCALLY CONNECTED CONTINUUM

R. H. BING

A topological space is metrizable if there is a distance function D(x, y) such that if x, y, z are points, then

(1)
$$D(x, y) \ge 0$$
, the equality holding only if $x = y$,

(2)
$$D(x, y) = D(y, x) \text{ (symmetry)},$$

(3)
$$D(x, y) + D(y, z) \ge D(x, z)$$
 (triangle condition),

(4)
$$D(x, y)$$
 preserves limit points.

By (4) we mean that x is a limit point of the set T if and only if for each positive number ϵ there is a point of T at a positive distance from x of less than ϵ . We say that the metric D(x, y) is convex if for each pair of points x, y there is a point u such that

(5)
$$D(x, u) = D(u, y) = D(x, y)/2.$$

A subset M of a topological space S is said to have a convex metric (even though S may have no metric) if the subspace M of S has a convex metric.

It is known $[5]^1$ that a compact continuum is locally connected if it has a convex metric. The question has been raised [5] as to whether or not a compact locally connected continuum M can be assigned a convex metric. Menger showed [5] that M is convexifiable if it possesses a metric D such that for each point p of M and each positive number e there is an open subset R of M containing p such that each point of R can be joined in M to p by a rectifiable arc of length (under D) less than e. Kuratowski and Whyburn proved [4] that M has a convex metric if each of its cyclic elements does. Beer considered [1] the case where M is one-dimensional. Harrold found [3] M to be convexifiable if it has the additional property of being a plane continuum with only a finite number of complementary domains.

We shall show that if M_1 and M_2 are two intersecting compact continua with convex metrics D_1 and D_2 respectively, then there is a convex metric D_3 on M_1+M_2 that preserves D_1 on M_1 (Theorem 1). Using this result, we show that any compact n-dimensional locally connected continuum has a convex metric (Theorem 6). We do not

Presented to the Society, February 28, 1948; received by the editors June 21, 1948.

¹ Numbers in brackets refer to the references cited at the end of the paper.

answer the question: Does each compact locally connected continuum have a convex metric?²

In my paper Extending a metric it is shown [2, Theorem 5] that if K is a closed subset of the metrizable space S and D_1 is a metric on K, then there is a metric D_2 on S that preserves D_1 on K. The following result is a modification of that result.

THEOREM 1. If M_1 and M_2 are two intersecting compact continua with convex metrics D_1 and D_2 respectively, there is a convex metric D_3 on M_1+M_2 that preserves D_1 on M_1 .

PROOF. Let G(x) be the least upper bound of $D_1(p, q)$ for all points p, q of $M_1 \cdot M_2$ such that $D_2(p, q) \leq x$. Then

(6)
$$G[D_2(p,q)] \ge D_1(p,q)$$
 $(p, q \text{ elements of } M_1 \cdot M_2).$

Since G(x) is a monotone nondecreasing function of x that approaches zero as x approaches zero, there is a function F(x) (x>0) such that F(x) approaches zero as x approaches zero, $F(x) \ge G(x)$, and the derivative of F(x) with respect to x is a continuous monotone non-increasing function greater than one.

If C is an arc which lies except for possibly its end points in $M_2-M_1\cdot M_2$ and $\int_C F'[D_2(p,M_1)]ds$ exists, where F'(x) represents the derivative of F(x) with respect to x, p is a variable point of C, s is the length along C under D_2 , and $D_2(p,M_1)$ is the greatest lower bound of $D_2(p,q)$ for all points q of M_1 , we define the length $L_0(C)$ of C under D_0 to be $L_0(C) = \int_C F'[D_2(p,M_1)]ds$. We note that $L_0(C)$ is not defined for all arcs C. However, if r and q are two points which lie on an arc C with such a length $L_0(C)$, then we call $D_0(r,q)$ the greatest lower bound of $L_0(C)$ for all such arcs C from r to q. Since F'(x) > 1, $D_0(r,q) \ge D_2(p,q)$.

If r and q are two points of M_1 and $D_0(r, q)$ is defined, then

$$(7) D_0(r, q) \geq D_1(r, q)$$

because for each positive number ϵ there is a curve C from r to q whose interior lies in $M_1 - M_1 \cdot M_2$ such that

(8)
$$D_0(r, q) + \epsilon > \int_C F'[D_2(p, M_1)] ds \ge \int_C F'(s) ds$$
$$= F(\text{length } C \text{ under } D_2) \ge G[D_2(r, q)] \ge D_1(r, q).$$

The first " \geq " relationship in (8) follows from the facts that F'(x) is a

² Since this paper was submitted, both E. E. Moise [8] and the author [9], working independently, have answered this question in the affirmative.

nonincreasing function and $s \ge D_2(p, M_1)$ since the end points of C lie on M_1 ; the second " \ge " results from the facts that $F(x) \ge G(x)$, length C under $D_2 \ge D_2(r, q)$, and G(x) is a monotone nondecreasing function; the third " \ge " is a consequence of (6).

If q is a point of $M_2 - M_1 \cdot M_2$ and C is a shortest arc from q to M_1 under D_2 , then

$$L_0(C) = \int_C F'[D_2(p, M_1)]ds = \int_C F'(s)ds = F[D_2(q, M_1)].$$

Hence, if p_1, p_2, \cdots is a sequence of points of $M_2 - M_1 \cdot M_2$ such that $D_2(p_i, M_1)$ approaches zero as i increases without limit, then $D_0(p_i, M_1)$ approaches zero as i increases without limit.

If p and q are two points of M_1 , we define $D_3(p, q)$ to be $D_1(p, q)$; if p is a point of M_1 and q is a point of $M_2 - M_1 \cdot M_2$, we define $D_3(p, q)$ to be the greatest lower bound of $D_1(p, a) + D_0(a, q)$ for all points a of M_1 ; if both p and q are points of $M_2 - M_1 \cdot M_2$, we define $D_3(p, q)$ to be the minimum of $D_0(p, q)$ and the greatest lower bound of $D_0(p, a) + D_1(a, b) + D_0(b, q)$, where a is a point of M_1 and so is a. If a is a is a we define a is a point of a

The above definition of $D_3(p, q)$ is equivalent to defining $D_3(p, q)$ to be the greatest lower bound of the lengths of all arcs C from p to q where length in M_1 is measured under D_1 and length in $M_2 - M_1 \cdot M_2$ is measured under D_0 . It follows from (7) that we need only consider those arcs C which intersect M_1 in a connected piece if at all.

Now the function $D_3(p, q)$ may be shown to satisfy conditions (1), (2), (3), (4), and (5). Hence, it is a convex metric for M_1+M_2 that preserves D_1 on M_1 .

THEOREM 2. If D_1 and D_2 are convex metrics for the intersecting compact continua M_1 and M_2 respectively and $D_2 \ge D_1$ on $M_1 \cdot M_2$, then for each positive number ϵ there is a convex metric D_3 for $M_1 + M_2$ such that $D_3 = D_1$ on M_1 , $D_3 \le D_2$ on M_2 , and the diameter under D_3 of each component of $M_2 - M_1 \cdot M_2$ is less than ϵ plus twice the diameter under D_1 of the boundary with respect to $M_1 + M_2$ of this component.

PROOF. Define E(p, q) to be the greatest lower bound of all sums of the type $f(p, p_1) + f(p_1, p_2) + \cdots + f(p_n, q)$ where adjacent points of p, p_1, \cdots, p_n, q belong to the same one of the continua M_1, M_2 and $f(p_i, p_j)$ is $D_1(p_i, p_j)$ or $D_2(p_i, p_j)$ according as $p_i + p_j$ is or is not a subset of M_1 . Since $D_2 \ge D_1$ on $M_1 \cdot M_2$, n need be no larger than 2 for E(p, q) to attain this greatest lower bound. The convex metric E on $M_1 + M_2$ preserves D_1 on M_1 and $E \le D_2$ on M_2 .

Let X be the set of all points p of $M_2-M_1\cdot M_2$ such that the

distance from p to M_1 under E is greater than one-half the diameter under E of the boundary with respect to $M_1 + M_2$ of the component of $M_2 - M_1 \cdot M_2$ containing p.

Let n be a positive number so small that ϵ/n is greater than twice the diameter of M_2 under E. If C is a rectifiable (under E) arc in M_1+M_2 from p to q, define L(C) to be the greatest lower bound of all sums of the type $f(p, p_1)+f(p_2, p_3)+\cdots+f(p_k, q)$ where p_1, p_2, \cdots, p_k are points of C and $f(p_i, p_j)$ is either n times or 1 times the length under E of the subarc of C from p_i to p_j according as this subarc is or is not a subset of X. If $D_3(p, q)$ is defined to be the greatest lower bound of all such values L(C), D_3 satisfies the conditions of Theorem 2.

Theorem 3. Suppose M_2 is a compact continuum with a convex metric, M_2 lies in a complete locally connected space S with a metric D, each component of $S-M_2$ is of diameter under D of less than θ and M_1 is a subcontinuum of M_2 with a convex metric D_1 such that

(9)
$$D_1(p, q) \leq D(p, q)$$
 if $D_1(p, q) > \theta$ $(p, q \text{ elements of } M_1)$.

For each positive number ϵ there is a continuum M_3 containing M_2 and a convex metric D_3 for M_3 such that D_3 preserves D_1 on M_1 and the boundary of each component of $S-M_3$ is of diameter less than $\theta+\epsilon$ under D_3 .

PROOF. By Theorem 1, there is a convex metric D_2 for M_2 that preserves D_1 on M_1 . Let n be an integer so large that

(10)
$$nD_2(p, q) > D(p, q)$$
 if $D(p, q) > \epsilon/8$ $(p, q \text{ elements of } M_2)$.

Let X denote the collection of all pairs of points (x, y) such that both x and y are points of the boundary of the same component of $S-M_2$ and

(11)
$$nD_2(x, y) > \theta + \epsilon.$$

There is a finite subcollection X' of X such that for each element (x, y) of X there is an element (x', y') of X' such that both x' and y' are accessible from the same component of $S-M_2$ and

(12)
$$nD_2(x, x') + nD_2(y', y) < \epsilon/2.$$

Let C_1, C_2, \dots, C_j be a finite collection of components of $S - M_2$ irreducible with respect to the property that for each element of X' there is an integer i less than or equal to j such that both points of this element of X' are accessible from C_i .

There is a dendron T_i $(i = 1, 2, \dots, j)$ such that T_i lies except for

its ends in C_i and the sum of the ends of T_i is a finite subset Y_i of the boundary of C_i such that Y_i contains all points of the sum of the elements of X' that are accessible from C_i and for each point q of the boundary of C_i there is a point r of Y_i such that $nD_2(r, q) < \epsilon/2$. Let $D(T_i)$ be a convex metric for T_i such that if p and q are two end points of T_i , then

(13)
$$\theta + \epsilon/4 < D(T_i; p, q) < \theta + \epsilon/2.$$

Let E be a metric for $M_2 + \sum T_i = M_3$ such that the distance between two points of M_3 under E is the greatest lower bound of the lengths of arcs containing them where length is measured by nD_2 in M_2 and by $D(T_i)$ in T_i . If (x, y) is an element of X, it follows from (12) and (13) that

(14)
$$E(x, y) < \theta + \epsilon.$$

The diameter of the boundary of each component of $S-M_3$ is less than $\theta+\epsilon$ under E, for suppose p and q are two points of this boundary; if p+q is a subset of M_2 , $E(p,q)<\theta+\epsilon$ by (11) and (14); if neither p nor q is a point of M_2 , both belong to some T_i whose diameter is less than $\theta+\epsilon/2$; if p is an interior point of a T_i which does not contain q, there is an end point r of T_i such that $nD_2(r,q)<\epsilon/2$ and then $E(p,q) \leq D(T_i; p,r)+nD_2(r,q)<\theta+\epsilon$.

We shall show that if r and s are two points of M_1 , then $D_1(r, s) \le E(r, s)$. Suppose this is not the case and that rs is an arc from r to s in M_3 whose length is less than $D_1(r, s)$ under E. If $D_1(r, s) \le \theta$, then rs is a subset of M_2 alone and

(15)
$$E(r, s) = nD_2(r, s) \ge D_2(r, s) = D_1(r, s).$$

Suppose rs is not a subset of M_2 and p_1p_2 , p_3p_4 , \cdots , $p_{2j-1}p_{2j}$ are the subarcs of rs which lie except for their end points in $M_3 - M_2$ where $p_{2i-1}p_{2i}$ precedes $p_{2i+1}p_{2i+2}$ on rs in the order from r to s. Let Z(t) be 0 or t according as t is less than $\epsilon/8$ or not. If $D_1(r, s) > \theta$, it follows from (9), (3), and (10) that

$$D_{1}(r, s) \leq D(r, s) \leq D(r, p_{1}) + D(p_{1}, p_{2}) + \cdots + D(p_{2j}, s)$$

$$< D(r, p_{1}) + \theta + D(p_{2}, p_{3}) + \cdots + \theta + D(p_{2j}, s)$$

$$< Z[D(r, p_{1})] + Z[D(p_{2}, p_{3})] + \cdots + Z[D(p_{2j}, s)]$$

$$+ j\theta + (j + 1)\epsilon/8$$

$$\leq nD_{2}(r, p_{1}) + nD_{2}(p_{2}, p_{3}) + \cdots + nD_{2}(p_{2j}, s)$$

$$+ j(\theta + \epsilon/4)$$

$$\leq \text{length } rs \text{ under } E.$$

It follows from (15) and (16) that $E(r, s) \ge D_1(r, s)$.

It follows from Theorem 2 that there is a convex metric D_3 for M_3 such that $D_3 = D_1$ on M_1 and $D_3 \le E$. The boundary of each component of $S - M_3$ is of diameter less than $\theta + \epsilon$ under D_3 because it is under E.

Theorem 4. Suppose M is a compact locally connected continuum such that if p is a point contained in an open subset R_1 of M, there is an open subset R_2 of R_1 containing p such that the boundary of R_2 with respect to M is a subset of a subcontinuum of M with a convex metric. Then M has a convex metric.

PROOF. Let F be a metric for M. We shall show that there is a collection of continua M_1, M_2, \cdots in M and a collection of metrics D_1, D_2, \cdots such that:

- (a) M_{i+1} contains M_i .
- (b) D_i is a convex metric for M_i .
- (c) D_{i+1} preserves D_i on M_i .
- (d) Under F, each component of $M M_i$ is of diameter less than $1/4^i$.
- (e) Under D_i , the boundary (with respect to M) of each component of $M M_i$ is of diameter less than $1/4^i$.
- (f) Under D_{i+1} , the common part of the M_{i+1} and each component of $M-M_i$ is of diameter less than $3/4^i$.

First, we show that if ϵ is a positive number, there is a subcontinuum W of M with a convex metric such that each component of M-W is of diameter less than ϵ under F. By the Heine-Borel Theorem, we find that there is a finite collection G of subcontinua of M such that each element of G has a convex metric, for each point p of M there is an element g of G such that G belongs either to G or to a component of G of diameter under G of less than G, and the sum G of the elements of G is a continuum. Each component of G is of diameter less than G under G and it follows from Theorem 1 that G has a convex metric.

Let M_1 be a subcontinuum of M with a convex metric E such that each component of $M-M_1$ is of diameter less than 1/4 under F. A suitable multiple of E gives a metric D_1 for M_1 which will satisfy conditions (b) and (e).

Let n be an integer so large that

$$nF(p, q) > D_1(p, q)$$
 if $D_1(p, q) > 1/17$ $(p, q \text{ elements of } M_1)$.

There is a continuum W in M containing M_1 such that W has a convex metric and the diameter of each component of M-W is less than

1/17 under nF. By Theorem 3, there is a continuum M_2 with a convex metric E such that M_2 contains W, E preserves D_1 on M_1 , and the diameter under E of the boundary with respect to M of each component of $M-M_1$ is less than $1/4^2$. Applying Theorem 2 we find that M_2 has a convex metric D_2 such that M_2 and D_2 satisfy conditions (a), (b), (c), (d), (e), and (f).

Similarly, there exist continua M_3 , M_4 , \cdots and convex metrics D_3 , D_4 , \cdots satisfying conditions (a), (b), (c), (d), (e), and (f). Let D be a function of the pairs of points of M such that D(p, q) is the lower limit of $D_1(p_1, q_1)$, $D_2(p_2, q_2)$, \cdots where p_1, p_2, \cdots and q_1, q_2, \cdots are sequences of points converging to p and q respectively and $p_i + q_i$ is a subset of M_i . We shall show that D preserves limit points in M.

Let ϵ be a positive number and n an integer so large that $3/4^n + 3/4^{n+1} + \cdots < \epsilon/4$. If p and q are points of the same component of $M - M_n$, then $D(p, q) < \epsilon/2$ by (f). If p is a point of M_n , let R be the set of all points r of M_n such that $D_n(p, r) < \epsilon/2$. The sum V of R and all components of $M - M_n$ that have a point of R on their boundaries is an open subset of M containing p and if q is a point of V, then $D(p, q) < \epsilon$. Hence, the set of points q such that $D(p, q) > \epsilon$ is not a limit point of p.

If V is an open subset of M containing p, we shall show that there is a positive number ϵ such that $D(p, M-V) \ge \epsilon$. Let R be an open subset of V containing p and n an integer such that $F(R, M-V) > 3/4^n$. There is a positive number ϵ such that $D_n(r, s) > \epsilon$ if $F(r, s) > 1/4^n$. Since each component of $M-M_n$ is of diameter less than $1/4^n$ under F, each arc in M from R to M-V contains points r and s of M_n such that $F(r, s) > 1/4^n$. Hence, if k is an integer bigger than n, $D_k(R \cdot M_k, [M-V] \cdot M_k) > \epsilon$. Hence, $D(p, M-V) \ge \epsilon$.

We have shown that D satisfies conditions (1), (2), and (4). As each D_i satisfies conditions (3) and (5) and D is the limit of D_1, D_2, \cdots , then D satisfies these conditions. Hence, it is a convex metric for M.

THEOREM 5. If M is an n-dimensional locally connected compact continuum and ϵ is a positive number, there is a locally connected continuum W in M such that each component of M-W is of diameter less than ϵ , W is (n-1)-dimensional if n>1, and W is a dendron (acyclic continuous curve) if n=1.

PROOF. An application of the Heine-Borel Theorem gives that there is an (n-1)-dimensional closed subset H of M such that each component of M-H is of diameter less than ϵ . If n-1>0, H is

contained in an (n-1)-dimensional locally connected subcontinuum of M [6, Theorem 1]. If n-1=0, a dendron in M contains H [7, Theorem 1].

THEOREM 6. Each n-dimensional compact locally connected continuum has a convex metric.

PROOF. If n=1, Theorem 6 follows from Theorems 4 and 5 and the fact that a dendron has a convex metric. If n>1, Theorem 6 follows from Theorems 4 and 5 and induction on n.

DEFINITION. A set S is said to be finite-dimensional if for each point p of S and each open subset R of S containing p there is an integer n and an open subset R' of R containing p such that the boundary of R' with respect to S is n-dimensional.

The following result may be established by using Theorems 4, 5, and 6.

THEOREM 7. Each finite-dimensional compact locally connected continuum has a convex metric.

REFERENCES

- 1. Gustav Beer, Beweis des Satzes, dass jede im kleinen zusammenhängende Kurve konvex metrisiert werden kann, Fund. Math. vol. 31 (1938) pp. 281-320.
 - 2. R. H. Bing, Extending a metric, Duke Math. J. vol. 14 (1947) pp. 511-519.
- 3. O. G. Harrold, Jr., Concerning the convexification of continuous curves, Amer. J. Math. vol. 61 (1939) pp. 210-216.
- 4. C. Kuratowski and G. T. Whyburn, Sur les éléments cycliques et leurs applications, Fund. Math. vol. 16 (1930) pp. 305-331.
- 5. K. Menger, Untersuchungen über allgemeine Metrik, Math. Ann. vol. 100 (1928) pp. 75-163.
- 6. R. L. Wilder, On the imbedding of subsets of a metric space in Jordan continua, Fund. Math. vol. 19 (1932) pp. 45-64.
- 7. Leo Zippin, A study of continuous curves and their relation to the Janiszewski-Mullikin Theorem, Trans. Amer. Math. Soc. vol. 31 (1929) pp. 744-770.
- 8. E. E. Moise, Grille decomposition and convexification theorems for compact locally connected continua, to appear in Bull. Amer. Math. Soc.
 - 9. R. H. Bing, Partitioning a set, to appear in Bull. Amer. Math. Soc.

University of Wisconsin

1949]