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A topological space is metrizable if there is a distance function 
D(x, y) such that if x, yy z are points, then 

(1) D(x, y) ^ 0, the equality holding only if x = y, 

(2) D(x, y) = D(y, x) (symmetry), 

(3) D(x, y) + D(y, z) ^ D(x, z) (triangle condition), 

(4) D(x, y) preserves limit points. 

By (4) we mean that x is a limit point of the set T if and only if for 
each positive number € there is a point of T at a positive distance from 
x of less than €. We say that the metric D(x> y) is convex if for each 
pair of points x, y there is a point u such that 

(5) D(x, u) = D(u, y) = D(x, y)/2. 

A subset M of a topological space 5 is said to have a convex metric 
(even though S may have no metric) if the subspace M of 5 has a 
convex metric. 

It is known [5 J1 that a compact continuum is locally connected if it 
has a convex metric. The question has been raised [5] as to whether or 
not a compact locally connected continuum M can be assigned a con­
vex metric. Menger showed [5] that M is convexifiable if it possesses a 
metric D such that for each point p of M and each positive number e 
there is an open subset R of M containing p such that each point of 
R can be joined in M to p by a rectifiable arc of length (under D) less 
than e. Kuratowski and Whyburn proved [4] that M has a convex 
metric if each of its cyclic elements does. Beer considered [ l ] the 
case where M is one-dimensional. Harrold found [3] M to be con­
vexifiable if it has the additional property of being a plane continuum 
with only a finite number of complementary domains. 

We shall show that if M\ and M2 are two intersecting compact con­
tinua with convex metrics D\ and D2 respectively, then there is a 
convex metric D% on M\-\-Mi that preserves D\ on M\ (Theorem 1). 
Using this result, we show that any compact ^-dimensional locally 
connected continuum has a convex metric (Theorem 6). We do not 
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answer the question: Does each compact locally connected continuum 
have a convex metric^2 

In my paper Extending a metric it is shown [2, Theorem 5] that if 
if is a closed subset of the metrizable space S and Di is a metric on 
K, then there is a metric D2 on S that preserves D\ on K. The fol­
lowing result is a modification of that result. 

THEOREM 1. If MI and M2 are two intersecting compact continua with 
convex metrics Di and D2 respectively, there is a convex metric D$ on 
M1+M2 that preserves Dx on Mx. 

PROOF. Let G(x) be the least upper bound of Di{p, q) for all points 
p, q of Mi- M2 such that D2(p, q) <£*. Then 

(6) G[D2(p, q)] ^ Di(p, q) (p, q elements of MVM2). 

Since G(x) is a monotone nondecreasing function of x that approaches 
zero as x approaches zero, there is a function F(x) (x>0) such that 
F(x) approaches zero as x approaches zero, F(x)^G(x), and the 
derivative of F(x) with respect to x is a continuous monotone non-
increasing function greater than one. 

If C is an arc which lies except for possibly its end points in 
M2 — Mi-M2 and fc F'[D2(p, Mx)]ds exists, where F'(x) represents 
the derivative of F(x) with respect to x, p is a variable point of C, s is 
the length along C under Z>2, and D2{p, Mi) is the greatest lower bound 
of D2(p, q) for all points q of Mi, we define the length Lo(C) of C under 
D0 to be L0(C) =JcFr [D2(p, Mi) ]ds. We note that L0(C) is not defined 
for all arcs C. However, if r and q are two points which lie on an arc 
C with such a length L0(C), then we call D0(r, q) the greatest lower 
bound of Lo(C) for all such arcs C from r to q. Since F'(x) > 1, Do(r, q) 
^D2(p, q). 

If r and q are two points of Mi and D0(r, q) is defined, then 

(7) D0(r, q) ^ Di(r, q) 

because for each positive number e there is a curve C from r to q 
whose interior lies in Mi — Mi • M2 such that 

/ON Do(r, q)+e> f Ff[D2(p, Mi)]ds ^ f F'(s)ds 
\o) J c J c 

= ^(length C under D2) è G[D2(r, q)] ^ Di(r, q). 

The first " è " relationship in (8) follows from the facts that F'(x) is a 
2 Since this paper was submitted, both E. E. Moise [8] and the author [9], working 

independently, have answered this question in the affirmative. 
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nonincreasing function and s^D2(p, Mi) since the end points of C 
lie on Mi; the second u*>" results from the facts that F(x)^G(x), 
length C under D27zD2(r, q), and G(x) is a monotone nondecreasing 
function; the third " ^ " is a consequence of (6). 

If q is a point of Mi — Mi- M2 and C is a shortest arc from q to Mi 
under D2y then 

Lo(C) = Ç F'[D2{p, Mi)]ds = f F'(s)<& =F[ZM<7, # i ) ] -
J c J c 

Hence, if pi, p2l • • • is a sequence of points of M2 — Mi-M2 such 
tha t D2(pi, Mi) approaches zero as i increases without limit, then 
Do(pi, Mi) approaches zero as i increases without limit. 

If p and q are two points of Mi, we define D%(p, q) to be Di(p, q) ; 
if p is a point of Mi and q is a point of M2 —Mi-M2, we define 
D*(P> Q) to be the greatest lower bound of Di(p, a)+D0(a, q) for all 
points a of Mi; if both p and q are points of M2 —Mi-M2, we define 
D*{P> Q) to be the minimum of D0(p> q) and the greatest lower bound 
of Do(pt a)+Di(a, b)+D0(b, q), where a is a point of Mi and so is 
b. If p~q, we define D${p, q) to be equal to zero. 

The above definition of Dz(p, q) is equivalent to defining Dz(p, q) 
to be the greatest lower bound of the lengths of all arcs C from p to 
q where length in Mi is measured under Dx and length in M2 — Mi • M2 

is measured under Do. I t follows from (7) that we need only consider 
those arcs C which intersect Mi in a connected piece if at all. 

Now the function Dz(p, q) may be shown to satisfy conditions (1), 
(2), (3), (4), and (5). Hence, it is a convex metric for M1+M2 that 
preserves Di on Mi. 

THEOREM 2. If Di and D2 are convex metrics f or the intersecting com­
pact continua Mi and M2 respectively and D2 g: Di on Mi • M2, then for 
each positive number e there is a convex metric Dzfor M1+M2 such that 
Ds~Di on Mi, DzSD2 on M2, and the diameter under Dz of each com­
ponent of M2 — Mi • M2 is less than e plus twice the diameter under Dx of 
the boundary with respect to Mi+M2 of this component. 

PROOF. Define E(p, q) to be the greatest lower bound of all sums 
of the type f(p, pi) +f(pi, ƒ > * ) + ' ' " +ƒ(£», q) where adjacent points 
of p, pu • • • , pn, q belong to the same one of the continua Mi, M2 
and f {p^ pj) is Di(piy pj) or D2(pit pj) according as pi+pj is or is not 
a subset of Mi. Since D2 ^ Di on Mi • M2, n need be no larger than 2 for 
E(p, q) to attain this greatest lower bound. The convex metric E on 
M1 + M2 preserves A on Mi and E^D2 on M2. 

Let X be the set of all points p of M2--MvM2 such that the 
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distance from p to Mx under E is greater than one-half the diameter 
under E of the boundary with respect to M1+M2 of the component 
of M2 — Mi • M2 containing p. 

Let n be a positive number so small that e/n is greater than twice 
the diameter of Mi under £ . If C is a rectifiable (under E) arc in 
M1+M2 from p to q, define L(C) to be the greatest lower bound of all 
sums of the type f(p, pi) +f(p2, pz) + • • • +ƒ(ƒ>*, q) where £1, £2, • • •, 
£* are points of C and ƒ (£», £y) is either n times or 1 times the length 
under E of the subarc of C from pi to £y according as this subarc is or 
is not a subset of X. If Dz(p, q) is defined to be the greatest lower 
bound of all such values L(C), Dz satisfies the conditions of Theorem 
2. 

THEOREM 3. Suppose M2 is a compact continuum with a convex metric, 
M2 lies in a complete locally connected space S with a metric D, each 
component of S — M2 is of diameter under D of less than 0 and Mi is a 
subcontinuum of M2 with a convex metric Di such that 

(9) Di(p, q) g D(p, q) if Dx(p} q) > S (p, q elements of Mi). 

For each positive number e there is a continuum Mz containing M2 and 
a convex metric Dz for Mz such that Dz preserves Di on Mi and the 
boundary of each component of S — Mz is of diameter less than d+e 
under Dz. 

PROOF. By Theorem 1, there is a convex metric D2 for M2 that 
preserves Di on M\. Let n be an integer so large that 

(10) nD*(p, q) > D{p, q) if D(pt q) > e/S (p, q elements of M2). 

Let X denote the collection of all pairs of points (#, y) such that 
both x and y are points of the boundary of the same component of 
S — Af2and 

(11) nD2(x, y) > 6 + e. 

There is a finite subcollection X' of X such that for each element 
(#, y) of X there is an element (x', y') of X' such that both x' and yr 

are accessible from the same component of S — M2 and 

(12) nD2(xf O + nD2(y', y) < e/2. 

Let Ci, C2, • • • , Cj be a finite collection of components of S—M2 
irreducible with respect to the property that for each element of X' 
there is an integer i less than or equal to j such that both points of 
this element of X' are accessible from C». 

There is a dendron !T» (i = 1, 2, • • • , j) such that 7\- lies except for 
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its ends in d and the sum of the ends of Ti is a finite subset F< of the 
boundary of d such that F» contains all points of the sum of the ele­
ments of X' that are accessible from d and for each point q of the 
boundary of d there is a point r of Yi such that nD2(r} q) <e/2. Let 
D(Ti) be a convex metric for Ti such that if p and q are two end 
points of Ti, then 

(13) 0 + e/4 < Z>(7\-; J, S ) < 0 + 6/2. 

Let E be a metric for ikf2+ ^ j T i = M3 such that the distance be­
tween two points of Mz under E is the greatest lower bound of the 
lengths of arcs containing them where length is measured by nD2 

in M2 and by D(Ti) in TV If (x, y) is an element of X, it follows from 
(12) and (13) that 

(14) E(x, y) <6 + e. 

The diameter of the boundary of each component of S—Mz is 
less than 0+e under E, for suppose p and q are two points of this 
boundary; if p+q is a subset of ikf2, E(p, q) < 0 + e by (11) and (14); 
if neither p nor g is a point of M2, both belong to some Ti whose diam­
eter is less than d+e/2 ; if p is an interior point of a Ti which does not 
contain q, there is an end point r of Ti such that wJ92(r, q) <e/2 and 
then E(p, q) ^D(Ti; p, r)+nD2(rt q) < 0 + e . 

We shall show that if r and 5 are two points of M\, then Di(r, s) 
^ E ( r , s). Suppose this is not the case and that rs is an arc from r to 
5 in M% whose length is less than Di(r, s) under E. If Di(r, s) SO, then 
rs is a subset of M2 alone and 

(15) E(r, s) = nD2(r, s) è D*(r, s) = Di(r, s). 

Suppose rs is not a subset of M2 and p\p2, pzpt, • • • , p2j~ip2j are 
the subarcs of rs which lie except for their end points in ikf3 — M2 

where p2i-\p2% precedes 2̂»+î 2»+2 on rs in the order from r to 5. Let 
Z(t) be 0 or / according as / is less than e/8 or not. If Di(r, s) >0, it 
follows from (9), (3), and (10) that 

Di(r, s) ^D(r, s) £ D(r, pi) + D(ph #*) + • • • + D(p2h s) 

< D(r, pi)+0 + D(pt, pz) + • • • + 0 + D(p2j, s) 

<Z[D(r, K>] +Z[D(ph #•)] + • • • +Z[D(p2i, s)] 

(16) +jd + (j+l)e/8 

S rcP2(r, #1) + nD2(pt, pz) + • • • + wZ)2(̂ 23-, *) 

+ i(0 + €/4) 
^ length f s under E. 
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I t follows from (15) and (16) that E(r, j ) è A ( r , s). 
I t follows from Theorem 2 that there is a convex metric Dz for Mz 

such that Dz~Di on Mi and DZSE. The boundary of each com­
ponent of 5 — Mz is of diameter less than 0+e under Dz because it is 
under E. 

THEOREM 4. Suppose M is a compact locally connected continuum 
such that if p is a point contained in an open subset Ri of M, there is 
an open subset Ri of R\ containing p such that the boundary of R2 with 
respect to M is a subset of a subcontinuum of M with a convex metric. 
Then M has a convex metric. 

PROOF. Let F be a metric for M. We shall show that there is a 
collection of continua M\t M2, • • • in M and a collection of metrics 
Dh JD2, • • • such tha t : 

(a) Mi+i contains Mi. 
(b) Di is a convex metric for Mi. 
(c) Di+i preserves Di on Mi. 
(d) Under F, each component of M — Mi is of diameter less than 

1/4'. 
(e) Under Diy the boundary (with respect to M) of each com­

ponent of M—Mi is of diameter less than 1/4*. 
(f) Under Di+Xt the common part of the Mi+i and each component 

of M—Mi is of diameter less than 3/4' . 
First, we show that if € is a positive number, there is a subcon­

tinuum W of M with a convex metric such that each component of 
M—W is of diameter less than e under F. By the Heine-Borel 
Theorem, we find that there is a finite collection G of subcontinua of 
M such that each element of G has a convex metric, for each point p 
of M there is an element g of G such that p belongs either to g or to a 
component of M—g of diameter under F of less than e, and the sum 
W of the elements of G is a continuum. Each component of M — IF is of 
diameter less than e under 7? and it follows from Theorem 1 that W has 
a convex metric. 

Let Mi be a subcontinuum of M with a convex metric E such that 
each component of M— Mi is of diameter less than 1/4 under F. A 
suitable multiple of E gives a metric Di for Mi which will satisfy 
conditions (b) and (e). 

Let n be an integer so large that 

nF(pt q) > Di{py q) if Di(p, q) > 1/17 (p, q elements of Mi). 

There is a continuum W in M containing Mi such that W has a con­
vex metric and the diameter of each component of M— W is less than 
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1/17 under nF. By Theorem 3, there is a continuum M2 with a con­
vex metric E such that Mi contains W, E preserves D\ on Mi, and the 
diameter under E of the boundary with respect to M of each com­
ponent of M—Mi is less than 1/42. Applying Theorem 2 we find that 
Mi has a convex metric J92 such that Af2 and Z>2 satisfy conditions 
(a), (b), (c), (d), (e), and (f). 

Similarly, there exist continua Mz, Af4, • • • and convex metrics 
Dz, Z>4, • • • satisfying conditions (a), (b), (c), (d), (e), and (f). Let 
D be a function of the pairs of points of M such that D{p, q) is the 
lower limit of Di(pi, gi), D2(p2, #2), • • • where pi, p2, • • • and 
qi, q% • • • are sequences of points converging to p and g respectively 
and pi+qi is a subset of M*. We shall show that D preserves limit 
points in M. 

Let e be a positive number and n an integer so large that 3/4n 

+ 3 / 4 n + 1 + • • • <e /4 . If p and gare points of the same component of 
M — Mn, then D(p, q) <e/2 by (f). If p is a point of Mn, let i? be the 
set of all points r of Mn such that X)w(p, r) <e /2 . The sum F of R 
and all components of M—Mn that have a point of R on their 
boundaries is an open subset of M containing p and if q is a point 
of V, then Z>(p, g) <e. Hence, the set of points q such that D(p, q) >e 
is not a limit point of p. 

If V is an open subset of M containing p, we shall show that there is 
a positive number e such that D(p, M— V) ^ e . Let R be an open sub­
set of V containing p and n an integer such that F(R, M— V) >3/4 w . 
There is a positive number 6 such that Dn(^, s )>e if F(r, s ) > l / 4 n . 
Since each component of M — Mn is of diameter less than l / 4 n under 
Ft each arc in M from i? to M—V contains points r and 5 of Mn 

such that F(r, s ) > l / 4 w . Hence, if k is an integer bigger than n, 
Dk(R-Mk, [M-V]-Mh)>e. Hence, D(p, M-V)^e. 

We have shown that D satisfies conditions (1), (2), and (4). As 
each D{ satisfies conditions (3) and (S) and D is the limit of 
Dh D2, • • • , then D satisfies these conditions. Hence, it is a convex 
metric for M. 

THEOREM 5. If M is an n-dimensional locally connected compact 
continuum and e is a positive number, there is a locally connected con­
tinuum W in M such that each component of M—W is of diameter less 
than €, W is (w —1)-dimensional if n>ly and W is a dendron {acyclic 
continuous curve) ifn~l. 

PROOF. An application of the Heine-Borel Theorem gives that 
there is an (« —1) -dimensional closed subset H of M such that each 
component of M—H is of diameter less than e. If w — l > 0 , H is 
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contained in an (w —1)-dimensional locally connected subcontinuum 
of M [6, Theorem l ] . If w — l = 0 , a dendron in M contains II [7, 
Theorem l ] . 

THEOREM 6. Each n-dirnensional compact locally connected continuum 
has a convex metric. 

PROOF. If n = 1, Theorem 6 follows from Theorems 4 and 5 and 
the fact that a dendron has a convex metric. If « > 1 , Theorem 6 
follows from Theorems 4 and 5 and induction on n. 

DEFINITION. A set S is said to be finite-dimensional if for each point 
p of S and each open subset R of S containing p there is an integer n 
and an open subset R' of R containing p such that the boundary of 
R' with respect to 5 is w-dimensional. 

The following result may be established by using Theorems 4, 5, 
and 6. 

THEOREM 7. Each finite-dimensional compact locally connected con­
tinuum has a convex metric. 
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