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1. Introduction. The theory of the equivalence of quadratic forms 
over the ring of 2-adic integers is considerably more difficult than the 
corresponding theory for forms over the £-adic integers, p an odd 
prime, and has only recently been worked out to a comparable de­
gree. A problem still not completely solved is Witt 's cancellation 
theorem : namely, if ƒ, g and h are forms such that g and h have no 
variables in common with ƒ, then f+g equivalent to f+h implies g 
equivalent to h. This theorem, though true for p-a.dic integers when 
p is odd, does not always hold when p is even. We give here a case 
when it does hold (see theorem below). While this theorem follows 
almost immediately from results in a paper by Jones [l, Theorems 2 
and 6]2 it seems worthwhile in view of the rather long arguments of 
the theorems there to give an independent proof, especially since it in 
turn can be used to shorten some of the proofs of that paper. 

2. Proof of the theorem. We denote by capital italic letters 
matrices over R(2), the ring of 2-adic integers, while small italic 
letters with the exception of ƒ, g and h will stand for numbers in 
R(2). We shall consider only forms whose symmetric matrices have 
elements in R(2). A matrix is unimodular if its elements are in R(2) 
and its determinant a unit of R(2). A form is called unimodular if 
its symmetric matrix is unimodular. 

THEOREM. Let fi and / 2 be two equivalent unimodular forms over 
R(2) in Xi, X2, • • • , xn, g a nonsingular form over R{2) in xn+u 
xn+2, • • * i %n+8 and h a nonsingular form over R(2) in xn+i, xn+2, • • • , 
xn+t- If there is a matrix over R{2) taking fi+2g into f2+2h, then there 
is one over R(2) taking g into h; if s = t and the f or mer matrix is uni­
modular, then so is the latter. 

PROOF. Since/I and ƒ2 are equivalent we may take f\+2g into f2+2g 
by a unimodular transformation and thus we set / i = / 2 = / . By [l, 
Lemma l ] ƒ is equivalent to either a diagonal form or a sum of 
binary forms. If the latter is the case, then x2+f will be equivalent to 
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a diagonal form and since x2+f+2g is equivalent to x2+f+2h we 
shall assume that ƒ is a unimodular diagonal form. Let ƒ, g and h 
have respectively F, G and H as their symmetric metrices over R(2) 
and let Q be the n+s by n+t matrix taking F+2G into F+2H> 
where 4* denotes direct sum, that is, 

(F 0\ 

\0 2G/ 
Set 

e - U J-
where T is an n by « matrix, St is » by t, S3 is 5 by « and Si is s by 2. 
Then Q'(F+2G)Q = F+2H yields the following equations: 

(1) T'FT + Sj2GSz = F, 

(2) ri?52 + 53'2G54 = 0, 

(3) S/FSÜ + 54' 2GS4 = IE. 

We show in the following lemma that, since equation (1) implies 
T'FT=F (mod 2), there is an automorph D of F over i?(2) such that 
2(r+Z>)-1 is in i?(2). (An automorph of F is a matrix D such that 
D'FD = F.) Furthermore equation (2) and the fact that | T'F\ is a 
unit implies that £2=0 (mod 2) and hence that 

S = 54 - 5â(r + Z>)-tf, 

has its elements in i?(2). We shall show that S'2GS = 2H. Now 

S'2GS = [5/ - Si (T + D)'-lSj ]2G[St - S3(T + D)-^*] 

= SI IGSi - SI (T + D)'-lS3' 2GSt - 5/ 2GSa(T + D^St 

+ S{ (T + D)'-lS{ 2GSi(T + D)-^. 

Using (1) we have 

Si (T + D)'-lS{ 2GS3(T + D)-*S, 
(4) , > 

= SI (T + D)'-1 {F - T'FT] (T + D^S* 
Since F-T'FT=(D+T)'F(D+T)-T'F(D+T)-(T+D)'FT, the 
right side of (4) equals 

SIFSi - Si (T + D)'-lT'FS2 - SiFT(T + D)-^», 

which, using (2), becomes 

SiFSz + Si (T + Dy-W 2GS* + S{ 2GS3(T + D)~lS2. 
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Hence S'2GS = Si 2GS*+S{ FS2 = 2H from equation (3). 
If s = t and Q is unimodular, we have not only S'GS = H, but also 

by symmetry S*'HS*~G for some s by s matrix S* over R(2). By 
substitution we see that, since | G\ is not zero, \S\ is a unit and 5 is 
unimodular. The condition that g and h be nonsingular is not essential, 
as it can be shown with little difficulty that the theorem is still true 
without this restriction. 

We now prove the basic lemma. 

LEMMA. If F is a unimodular diagonal matrix over R{2) and T a 
matrix over R{2) such that T'FT^F (mod 2), then there is an auto­
morph D of F over R{2) such that 2(T+D)~~l is in 12(2). 

PROOF. Let r=(/*y), i, j = l, 2, • • • , n and F=ai+a2+ • • *+«n . 
Since permuting the rows and the same columns of T and F does not 
alter the properties we desire, we shall do this at will. Note that T'T 
s I (mod 2). 

First, suppose that tu is a non-unit for some i. Permute rows and 
columns, if necessary, to make tu a non-unit, choose D = 1 +Di and 
set u = tn+l, which will be a unit. If we set 

p J l -U~1T>) and T = (hl T \ 

where T% is a 1 by n — 1 matrix, r 3 is n — 1 by 1 and T4 is w — 1 by 
n — 1, we have 

where 7 \ = r4— TzU^Ti and X>i is to be chosen an automorph of 
Fi = a 2 + « 3 + • • • +«n. By adding appropriate multiples of the first 
row of (5) to the later rows we can replace T$ by 0 without altering 
T\-\-Di. Referring now to the proof of the theorem and there replacing 
T, S2, Sz, Si by tu, r2 , r3 , r4 , respectively, we see that T'T^I (mod 2) 
implies that T{TX^I (mod 2). 

Secondly, suppose that tu is a unit for every i and Ujtji is a unit 
for some i and j , i^j. Permute rows and columns, if necessary, to 
make /12/21 a unit, and choose D = J2+I>2, where 1% is the 2 by 2 identity 
matrix. Then 

hx + 1 *u \ 

/21 J22 + 1 / * -
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is unimodular and if we set 

P.t1' -"-'T') and T-(T' T'\ 
\ 0 I ) \Tz Tj' 

where T0 is a 2 by 2 matrix, T2 is 2 by « — 2, and so on, we have 

'Ta + h 
Tz 

/To + h 0 \ 

where Ti = Té — T^U^lT2 and Z>2 is to be chosen an automorph of 
-F2 = a3+«4+ • • * -\-oin. As in the preceding case we can replace T'a by 
0 and have T{TX = I (mod 2). 

Thirdly, suppose T has the property that tu is a unit for every 
i, tij is a unit for some i^j and Ujtji is a non-unit for every iz^j. Now 
T'T^I (mod 2) implies that each row and column of T contains an 
odd number of units and that for each i and j , i^j, there is an even 
number of values of k such that /**£;* = 1 (mod 2). Thus by a permuta­
tion of rows and columns we may assume the leading 3 by 3 minor 
of T to be congruent (mod 2) to 

' 1 

0 

[0 

1 

1 

0 

V 

1 

1, 

Furthermore, two of the first three diagonal elements of F are con­
gruent (mod 4) and by a permutation of rows and columns of F and 
T we may assume that ai and a% are congruent (mod 4), that /n/12/22 
is a unit and fo\ a non-unit. We can complete the proof along the lines 
of the previous case if we can find an automorph Do of aiofi+atfv, 
where 

»-c :) (mod 2), 

since then 

U = Do + ( ) 
V21 ^22/ 

will be unimodular. Suitable matrices Do are 

C f ) - C T) 
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according as ai=ce2 (mod 8) or — 3cei=a2 (mod 8), where crandr are 
p-adic units satisfying the equations cei = a2cr2, —3ai = <X2T2. 

Finally, suppose T=I (mod 2). Choose Xi= ± 1 so that /n+Xi is 
twice a unit and set D=\i+Di. By adding appropriate multiples of 
the first column of T+D to the other columns and then similarly 
for rows we can reduce the first row and column of T+D to (/n+Xi, 
0, • • • , 0). The remaining elements still will have the property that 
those on the diagonal are units and the non-diagonal elements are 
non-units. 

By continuing the above reductive process we can reduce T+D to a 
direct sum of matrices Ti+Dit where each Ti+Di is one of three 
types: a unit, twice a unit, or a 2 by 2 unimodular matrix. Hence 
2 ( r+#) -~ 1 wi l lbe in i? (2 ) . 
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