A NOTE ON HILBERT’S NULLSTELLENSATZ
RICHARD BRAUER

In a recent paper, O. Zariski! has given a very simple proof of
Hilbert’s “Nullstellensatz.” We give here another proof which while
slightly longer is still more elementary.

Let K be an algebraically closed field. We consider a system of
conditions

fl(xly X2yt **, xn) = 0, f2(x1y Xy * xn) = 01
(1) ...’fr(xl’xz,...,xn)=0;
g(21, g, + -+, %) # O

where f1, f3, + + +, fr, and g are polynomials in # indeterminates x, x2,

+ + +, X, with coefficients in K. The theorem states that if the con-
ditions (1) cannot be satisfied by any values x; of K,* a suitable power of
g belongs to the ideal (fi, fo, * + +, fr).3

Proor. Let k& be the number of x; which actually appear in
S, foy ¢ ¢ ¢, fr and let x; be the x; of this kind with the smallest sub-
script. Denote by / the number of f, in which x; actually appears.
Let m be the smallest positive value which occurs as degree in x; of
one of the f,.* Now define a partial order for the different systems
(1) using a lexicographical arrangement. If (1*) is a second system
of the same type as (1) and if £*, I*, and m* have the corresponding
significance, we shall say that (1*) is lower than (1) if either £* <k,
or k*=Fk and I*¥*<I, or k*=k, I*¥*=1, and m* <m.

Suppose now that Hilbert’s theorem is false. Then there exist
systems (1) which are not satisfied by any values x; in K, and for
which no power of g lies in (fi, f2, - - -, fr). Choose such a system (1)
taking it as low as possible. Then for all systems (1*) lower than (1)
the theorem will hold.

If %, !, m have the same significance as above, one of the f,, say
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1 Bull. Amer. Math. Soc. vol. 53 (1947) pp. 362-368.

2 If we wish to formulate the theorem for arbitrary fields K as it is done in Zariski’s
paper, we have to consider a system of values %, %3, * + - , %, belonging to extension
fields of finite degree over K. If no such system satisfies the conditions (1), the same con-
clusion can be drawn. The same proof can be used.

3We do not use anything from the theory of ideals except the notation
(f1, f2y * + + , fy) for the set of all polynomials of the form P,fy+P:fs+ <+ « +Pf,,
P,&EK|x1, %2, + + + , %], and facts which are immediate consequences.

¢ The numbers &, }, m do not depend on g.
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f1, has degree m in x;. Set

(2) fi = hxi + fi

where £ is the highest coefficient of f as polynomial in x;.
Neither of the following systems:

3 fi=0,f=0,---,f,=0,h=0; g#0;

4 fi=0,fa=0,-+-,f=0;hg#0

can be satisfied by values x; of K, since otherwise (1) would be satis-
fied by the same values. Replace (3) by

(3*) ff=01f2=01"'1fr=0)h=0;g#o-

Then (3*) too cannot be satisfied by values x; in K. Clearly, (3*) is
lower than (1). Since Hilbert’s theorem then holds for (3*), we have

(5) e fufe: fnh)

for a suitable exponent s.

In the discussion of (4), we distinguish two cases.

Case A.1=2. Then x; appears in some f, with p =2, say in fa. Divide
f2 by fi considering both as polynomials in x; alone. If we multiply by
a suitable power k¢ of the highest coefficient % of fi, we can remove
the denominators and set

hfy = Qfi + R

where Q and R are polynomials in all the x; and where R is of degree
smaller than m in x;. The system.

(4*) f1=0,R=0’f3=0’..-’fr=0; hg¢0

cannot be satisfied by any values x; in K, since (4*) would imply

(4). But (4*) is lower than (1) and hence Hilbert's theorem holds

for (4*). Then, for a suitable exponent ¢, (hg)'E(f1, R, fs, * * * , fr)-
Replacing R by h4;— Qf,, we obtain

(6) h‘gte(flyfb' ° sfr)'
It follows from (5) that gt+** belongs to
gt(flrf% MR sfry h)‘ g g‘(fltfz’ ¢ )frr h“) g (fl;ny ¢ ,f,.,g‘h‘).

Then (6) shows that gtt**c(fy, fo, + + +, fr), in contradiction to the
assumption that no power of g belongs to (fy, f2, * * *, fr).

Case B. I=1. If we succeed again in establishing (6), we have the
same contradiction as in the Case A, and Hilbert's theorem will be
proved.
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In this case divide g»*! by fi, considering both as polynomials in x;
alone. We may then set

Q) higmtt = Qfi + R

where ¢ is again a positive integer, where Q and R are polynomials in
all the x;, and where the degree of R in x; is smaller than m. Consider
here the system

(&) fo=0,fs=0, -+, fy=0; kR 05
We wish to show that (4**) cannot be satisfied by values x; in K.
If this were not so, choose a system of values xi*, x5, - - -, x.f of K

which satisfy the conditions (4**). Replace here x¥ by an indeter-
minate x;, leaving all the other x} fixed. The conditions f,=0,
fs=0, - - -, f,=0, and k>0 are not affected, since x; does not appear
in them. As shown by (2), the equation fi=0 is of degree m in x;
and has therefore m roots x in the algebraically closed field K. If g
would not vanish when we set x; =x{*, we would thus find a system
of values of K which satisfies all the conditions (4) and this is im-
possible. Hence g must vanish when we set x;=x{* and it follows
from (7) that the same holds for R. Moreover, as root of the equation
R=0 in x;, the quantity x* has the same multiplicity as for f;=0.
Thus the equation R=0 of degree less than m in x; has m roots x;=x}.
Consequently, R must vanish identically in x;. However, for x; =x},
we had R0, as shown by (4**). Thus the assumption that (4**)
can be satisfied by values of K leads to a contradiction.

If »>1, the system (4**) is lower than (1) and we may again apply
Hilbert's theorem. This shows that a suitable power (hR)® belongs
to (fs, fs + + -, fr). This still holds for r=1, when we interpret
(f2y f3, * + +, fr) as the zero ideal. Indeed, since (4**) cannot be satis-
fied, AR must vanish for all systems of values x; of K, and hence
identically.! Now (7) yields

(hetigmttyy = (BQf1 4+ hR)* € (fu, far - -+ fo)-

If the integer ¢ satisfies the inequalities ¢= (¢+1)v, ¢= (m-+1)v, then
(6) will hold again. But this is all we had to show and the proof of
Hilbert’s theorem is complete.
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5 If r =1, the system (4**) is to consist only of the inequality AR %0,

8 We assume the elementary theorem that if a polynomial in several variables
vanishes for all systems of values of the underlying field K and if K is either infinite
or contains at least sufficiently many elements, the polynomial vanishes identically.



