A NOTE ON LACUNARY POLYNOMIALS
MORRIS MARDEN

1. Introduction. In the present note we shall give an elementary
derivation of some new bounds for the p smallest (in modulus) zeros
of the polynomials of the lacunary type

(1.1) f&) =a0o+ a1z 4 -+ - + 2% + Gu2™ + 2™ + - -« + ay2™,

a6, 70, 0<p=n<m< -+ < up.
This will be done by the iterated application, first, of Kakeya's
Theorem! that, if a polynomial of degree # has ¢ zeros in a circle C

of radius R, its derivative has at least p—1 zeros in the concentric
circle C’ of radius R’ =R¢(n, p); and, secondly, of the specific limits

(1.2) o(n, p) < csc [1/2(n — p + 1)],
(1.3) o(n, p) < p (n+ )/t — j)

furnished by Marden? and Biernacki® respectively.

2. Derivation of the bounds. An immediate corollary to Kakeya’s
Theorem is:

THEOREM L. If the derivative of an nth degree polynomial P(2) has at
most p—1 zeros in a circle ' of radius p, then P(2) has at most p zeros in
the concentric circle I'' of radius p’ =p/¢p(n, p+1).

We shall use Theorem I to prove the following theorem.
THaEOREM I1. If all the zeros of the polynomial

@.1) fo(3) = namg -+ + nxao + (1 — D(wa — 1)+ -+ (nx — Naws
. + ot (= p) (2 — ) - - - (me — P)apz?

lie in the circle |3| S Ro, at least p zeros of polynomial (1.1) lie in the
circle
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k
| 2| = R(p, k) = RoII (s, ms — p + 1).
i1

For this purpose we define the sequence of polynomials

(2.2) Fo(z) = zmf(1/2),

(2.3) Fi(s) = g=mristmoiFia(),  j=1,2,--,k
We may verify easily that

(2.4 Fi(z) = 27fo(1/2).

All the zeros of Fi(z) therefore lie outside the circle |z[ = (1/Ry).
By equation (2.3), the zeros of Fi_,(2) are the zeros of Fi(2) and a
zero of multiplicity #;—p —1 at the origin and, hence, only the latter
lies inside Izl <1/R,. By Theorem I, Fi_1(2) has at most n;—p zeros
in

| 5| < [Rop(n1, 1 — p + 1)]* = 1/R(p, 1).

Let us now assume, as already verified for j=1, 2, - - -, s, that
Fy_;(2) has at most n;—p zeros in the circle |z| <1/R(p, 7). From
equations (2.3) with j replaced by k—s, it follows then that F;_,_;(2)
has zeros of total multiplicity at most

("0+1_”s"'1)+(”0'—P)=”0+1—1’—1

in this circle. By Theorem I, therefore, Fi_,-1(2) has at most #,41—2
zeros in the circle

‘ ZI < [R(p, 5)p(ta41, o1 — p + )] = 1/R(p, s + 1).

By mathematical induction, it follows that Fy(z) has at most 7z —p
zeros in the circle | z| <1/R(p, k).

By (2.2), f(z) has therefore at most n;—p zeros outside the circle
| 2| =R(p, k) and hence at least p zeros in or on this circle.

By using the limits (1.2) and (1.3), we now deduce from Theorem
II the following corollary.

COROLLARY 1. At least p zeros of polynomial (1.1) lie in each of the
circles

(2.5) | 2| = Ro csc* (x/2p),
(2.6) Msmqﬁw+mw—ﬁ

If it is known that all the zeros of the polynomial
hz) =ao+ aiz+ « -+ + ap2?
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lie in the circle lz] <R, then the application of a theorem in a
previous paper? permits us to take

Ro = [Rumans - - - ma/(n1 — p)(na — )+ -+ (me — p)] = Ra.

As (2.6) with R, replaced by R; is the bound furnished recently by
Biernacki,® we see that the bound (2.6) is at least as good as his
bound.

3. Application to lacunary series. We shall now use Corollary 1 to
prove the following theorem.

THEOREM III. Let py, 0<py < o, be the radius of convergence of the
series
g8(2) = a0+ oz + -+ - + a2 + 3™ F Cg™ -,
aoap # 0, 1=sp<m<ne <~ -,

Let the series E(l /n;) be canvergent, so that the product

A@m) =TT [1 = (m/n)]
=1
1s also convergent. Let p, the radius of the circle ]z[ =p containing all the
geros of the polynomial

G(z) = A(0)ao + A(Dawz + - - + A(p)ays?,
be such that

p—~1

PH A(=7)/A(5) = p2 < p1.

j=1
Then g(2) has at least p zeros in the circle ]z| =p3.

Let us consider equations (1.1) and (2.1) as defining the sequences
of polynomials f(z, k) and fo(z, k) respectively. When k— o, the
sequence [fo(z, k) /mns - - - m] converges uniformly to G(s) in | z| Zp.
By Hurwitz’ theorem, for any given positive ¢, we may choose a posi-
tive k1 so large that all the zeros of each fo(z, k), B =k, lie in the circle
]zl =p+e. By Corollary 1, at least p zeros of the f(2, k), k =k, lie in
the circle

l2] < o+ TL I (1 + j/n)/(1 = j/n) < pa+ € (ps/e) = o -

=1 =1

4 M. Marden, Bull. Amer. Math. Soc. vol. 49 (1943) p. 97, Corollary.
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Choosing € so small that pf +e<p;, we see that the f(z, k) converge
uniformly to g(z) in Izl <ps. Thus g(z) has p zeros in the circle
[zl <p4 +¢€ and, since ¢ is arbitrary, in the circle lzl =p3.

As a corollary to Theorem III, we may prove that, if g(z) is an
entire function, it assumes every finite value an infinite number of
times.
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