ON SOME CRITERIA OF CARLEMAN FOR THE COMPLETE
CONVERGENCE OF A J-FRACTION

H. S. WALL

1. Introduction. Carleman [1, pp. 214-215]* derived, from his
theory of integral equations, a number of criteria for the complete
convergence of a real J-fraction

1.1 - (as = 1, a, #~ 0).
The most important one of these criteria states that the J-fraction
is completely convergent if the series Y (1/csp)"?? diverges, where
Co, €1, 03, -+ + - are the coefficients in the power series 2. (cp/27+)
associated with the J-fraction. In [2] Carleman gave an algebraic
proof of this theorem for the case where b,=0, p=1, 2, 3, - - - . The
present note contains an algebraic proof for the general case, and
some remarks concerning the other criteria of Carleman, especially
with reference to their application to J-fractions with arbitrary
complex coefficients.

2. The determinate and indeterminate cases. Let ao=1, a,70,
by, p=1, 2, 3, - - -, be complex constants, and consider the system
of linear equations

(2.1) — Gpadpa+ (bp+2)xp — Cp%pr1 =0, p=1,2,3,---.

Since the a, are not zero, these equations determine x;, x5, %4, * * *
uniquely in terms of arbitrarily chosen initial values %o, ;. If o= —1,
x1=0, let x,=X,(2), and if x%=0, %=1, let x,=Y,(2). Then,
Xp+1(2)/ Ypia(2) is the pth approximant of the J-fraction (1.1). If
the infinite series EI X,(2)|? and Z| Y,(2)|? both converge for one
value of z, then they converge for every value of z [7, p. 120]. We
may accordingly distinguish two cases for a J-fraction (1.1) with
complex coefficients. In the indeterminate case, both the infinite series

(2.2) 21 x,010  X|r,0)]

are convergent. In the determinate case, at least one of these infinite
series is divergent. A real J-fraction is completely convergent if and
only if the determinate case holds. This is also the case of a de-
terminate moment problem [4].
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On applying Schwarz’s inequality to the determinant formulas

2.3) X ot @T5() = Xo@Y pirle) = —

and

@.4) Xpss @Y (@) — XV prale) = 22T E,
CpQpi1

after setting 2=0, we find immediately that when the indeterminate
case holds then the series Y (1/ Ia,,l) and Zl b,+1/a,,a,,+1| are con-
vergent. These and other criteria obtained by applying Schwarz'’s
inequality to other determinant formulas were found by Dennis and
Wall [3]. They were not aware of the fact that Carleman [1, p. 215]
had given the first of these criteria for the case of real J-fractions.
Hellinger [6] showed that the determinate case holds for a real
J-fraction if lim inf lapl is finite. This criterion, which is contained in
the ]ﬁrst criterion mentioned above, was given by Carleman [1, p.
215].

Let 61, 02, 03, + + - be complex numbers such that 8§|6,| =4,
p=1,2,3, .-, where § and A are positive constants independent
of p. If the determinate case holds for the J-fraction (1.1), then the de-
terminate case holds for the J-fraction

2
(25) - K M (50 = 1)
=1 bpdp+ 2
The introduction of the factors §; into (1.1) effects the replacement
of the series (2.2) by the series

> |2 nor =

op
so that the theorem is obviously true. Carleman [1, p. 215] obtained
this for the case of real a,, b,, 0, as a corollary to his general theory.
Let ap and B, be complex numbers such that

lan| < M, |8.] < M, O+ ap#0,p=1,2,3---.

If the determinate case holds for the J-fraction (1.1), then the determinate
case holds for the J-fraction

o
- l YP(O) |21

dpt1

2 = (Gp1+ ap1)?
2.6 — K = 0).
( ) p=1 bp +B,+ 2 (ao )

Carleman [1, p. 214] gave this theorem for the case of real as, bs,
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o, Be. If these numbers are complex and ax=0, k=1, 2, 3, - - -, then
the theorem can be proved by means of an easy modification of the
proof given in [7, pp. 120-121]. (Cf. also [8, p. 557].) The method
used in [7] can be modified to cover the case 8;=0, k=1,2,3, - - -,
and hence to establish the theorem in the general case. We shall indi-
cate briefly those modifications. Let

Ly(%) = — 0p1%p1+ bp%y — 0p%p41, ?=123---,

and let L/ (x) denote the expression L,(x) in which a, is replaced by
a,+a,, where the o, are any complex constants such that |a,,| <M,
ap+oap#0, p=1, 2, 3, - - -, The solution of the system L,(x)=0
under the initial conditions xp= —1, x,=0 is x,=X,(0), and under
the initial conditions xo=0, x;=1 the solution is x,= V,(0). Let x,
be the solution of the system L, (x) =0 under the initial conditions
x{ =a, x{ =b, where a and b are arbitrarily chosen constants. The
theorem will be established if we show that the convergence of the
series 9| X,(0)|2 and 3| ¥,(0)|? implies the convergence of the
series ) |x/ |2

If £, and £ are arbitrary solutions of the systems L,=0 and
L} =0, respectively, then we have the Green’s formula

3 ILyE) — L] = [Eobis — Eltpen)asls
en

- E (ap—-lf;-l + a,,E;,+1)£,, = 0.
p=1
If, in particular, £,=X,(0), {; =x,, this gives

-b+ (x:tX’H'l - x"t+1Xn)an - Z (ap—lx;—l + azrx:)+1)Xp =0,

p=1

where we have written X, for Xx(0); and if £,=Y,(0)=Y,, ¢/ =x,/,
we obtain

—a+ (xrlAYn-i-l - xnfklyn)an - Z (ap—lxz:—l + apx1:+l)yp = 0.
p=1

On multiplying the first of these equations by Y,, the second by
—X,, and adding, we find that

n
’ ’
Xn — E kn.pxp = h,,
p=1

where
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ap(Xp+1yn - Xan-H) + a%l(Xp—lyn - Xan-l)
’

1 n—1/ G
kn.p= +(a l/a 1) ?'_'1)2)""”"’1’

0, P =mn,
oY, — aX,
1 + (an—l/an— 1)

Under the hypothesis that the series Y| X,|2 and )| ¥,|? con-
verge, it follows, as indicated before, that the series »,|1/a,| con-
verges, s0 that limae, |@.—1| = . Since, by hypothesis, |es| <M,
p=1, 2,3, -, we then find at once by Schwarz’s inequality that
the double series )| k,q|? and the series | k,|? are convergent.
It then follows exactly as in [7, p. 121] that the series > |x/|?is
convergent, and the theorem is thereby established.

n

3. Criterion involving the moments c,. Let >_(c,/2**") be the power
series expansion in descending powers of z of a real J-fraction (1.1).
If the series

@3.1) g(—;;)mp

diverges, then the determinate case holds for the J-fraction. We shall
give a simple algebraic proof of this well known theorem of Carleman
[1, p. 215].

The quadratic forms

F, = 2”: Cptg—aXp¥q n=123-.:--,
P,g=1
are all positive definite [4], and we may therefore write
Fp= (bux1 + b1a%2 + -+ + + b1a®n)® + (D222 + basws + « + - + banda)?
+ -+ (bnnxn)zv

where the b,, are real constants independent of # for p <#, ¢=<n, and
where b,,70, p=1, 2, 3, - - -, n. The b,, are connected with the
partial numerators of the J-fraction by the formulas [9]

(@081 -+ - @3)" = bps1psr (g0 = by = 1)

and, obviously,

p+1

2
C2p = qu.p+1 (#=0,12-..)
g=1
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so that czp 2 b}41541. Consequently,
(@001 - - + 65)* S C2p.

Hence, by Carleman’s inequality? [2],

n 1 n 1 1/2p n 1 \1/2p
F s B ) B (L)™

p=1 | a,,l p\dia} - .- d p=1\ C2p

Therefore, if the series (3.1) is divergent, then the series ,|1/a,| is
divergent, so that, as indicated in §2, the determinate case holds for
the J-fraction.
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2 For an algebraic proof of Carleman’s inequality see, for instance [5].



