ON THE SUM OF CUBES

E. ROSENTHALL

Large capital letters 4, B, - - - (without or with subscripts) will
represent integers of the quadratic number field Ra(p) where
p=(—14(—3)V2)/2. Small latin letters a, b, - - - represent rational

integers, and the conjugate of a number X is denoted by X.

The object of this paper is to give a method for obtaining the com-
plete rational integer solution for the diophantine equations of the
form
(1) Z Zf' = 0, m > 3.

=1
This equation with m even, m=2n, can be written as Y (X,
+ X.')X;—X:i =0 where

(2) Xi = 22i1 + p(22i—1 — 22:)

and thus the problem of solving (1) in this case is reduced to that of
finding all the integers x;, X satisfying the equations

(3) E x.-X,' Y.‘ = 0,

=]
4) = X:+ Xi (G=1,2,--+,n)

and (2). When m is odd, m=2n—1, we solve the system (o) consist-
ing of (3), xn=X,=2%,-1and (2), 4) fori=1,2,--.,n—1.

The resolution of these two systems hinges on techniques de-
veloped by E. T. Bell [2],! being equivalent to the resolution of a
system of multiplicative equations and a system of linear homo-
geneous equations in Re in which the number of unknowns always
exceeds the number of equations.

In solving (1) the following equations appear:

(%) T1y1+ X2yt oo+ Xu¥a =0
in which the x;, ¥; (¢=1, 2, - - -, n) are 2» independent variables;
(6) @1+ 00+ Gin2n =0 (=12 .-+, mSn—1)

in which the # independent variables x; are to be solved in terms of
the coefficients a;;;
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1 Numbers in brackets refer to references cited at the end of the paper.
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) A1BiCy =+« = Ay 1By iCn
in 3(n—1) independent variables 4;, B;, C;;
(8) PlAlzl = P2A2;1-2 = . e e m= P”AJ"

in which the p;, 4; are independent variables.
The solution [5, p. 20 (13)] of (5) is

=1 n—1
mo=aa;, Y= — 2 0bii+ 2 Girdiiri
je=1 =1

for =1, 2, - . -, n with the convention that a sum in which the
lower limit exceeds the upper is vacuous. Note that there are
(n?*—mn)/2 free parameters b;,x and n-+1 free parameters @, a;.

If the system (6) is of rank m then its complete solution [3] in
determinantal form is written down as follows. Let e; be the de-
terminant obtained by deleting the jth column from the matrix of
the coefficients of the system consisting of (6) and the equations

ciaX1 =+ Cia%e 4+« + - 4 Cin%a = 0 G=12,---,n—m—1)
in which the ¢;; are arbitrary rational integers. Then
(9) ¥ = (_)ftef/e (j =12---, ”’)

where ¢ is an arbitrary integer and e=(ey, €z, * * +, €,).

The system (7) is recursive and can be solved completely by the
algorithm of reciprocal arrays [1] since the integers of Ra(p) form a
principal ideal ring. System (7) is equivalent to the equations

AiBt{:i = An—-an—-ICn—l (1‘ = 1: 21 crr,n— 2)'
The solution of the typical equation is
Ai = AuBuCa, Apy = AnHuFa,
B; = DaEnFq, Bn1 = DnBaJs,
Ci = GuHuJs, Cn1 = GaEuCar
Then the values of 4,1 are equated, also those of B,_1, and those of
Cn-1. The resulting three systems are each of the type (7) with n—2
in place of n—1. By repetitions of the process the solution of (7) in-

volving (n—1)=3""! free parameters K1, Ks, * + +, K(n-1) is obtained
in the form

A,‘ = K1q>i(K4, LR N K(n-l)), Bs’ = K2\I"1'(K41 tt K(n—-l)):
Ci = KiOiKy, - -+, Kn1))
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where each of ®,;, ¥;, ©; is a monomial in 3"~2—1 of the parameters
K, Ky, + + -, Ky each occurring only once in a particular ®;, ¥;, ©;
and

KiK:K3®i(Ky, ++ + ), Kn))¥i(Ky, + + + ) Ku-1))0i(Ky, + * + , Kny)
= KiKz+ -+ K-y
fori=1,2, .-, n—1.

The resolution of (8) is also recursive. This system is equivalent
to the n—1 equations pndnd, = pidid; (i =1,2,-++,n—1). The
solution [4, Theorem 1] of the typical equation is

pi = taViVa, pa = tuLiLi,

As =8SaTuLlin, An=SaUaVa.
Then the values of p, are equated and also those of 4, which yield the
two independent systems

(10) tuLaLin = ta1,1Ln-1,1Ln-1,1
and
(11) SaUaVii = Sn-1,1Un-1,1V-1,1

forz=1,2,.--,n-2.
System (10) is of the type (8) with z—1 in place of #; system (11)
is of the type (7) and its solution is therefore
S = K1‘1>.'(K4, Tty K(n—l))r Ui = Kz‘I’é(Kb ] K(n—l))r
Vie = K3®5(K17 tt K(ﬂ—-l))
fori=1,2,---,n—1.
Hence all integral solutions of (8) are given by
A; = K1®;K¥;Ly, An = K19:.K,¥:K40;,
pi = 11K K:0.0;, pn = taLiaLa,
with the condition (10).
The process just applied to (8) is now repeated on (10) which will
yield parametric expressions for ¢;, L similar to those for p;, A4
respectively subject to systems of the type (10) and (11) with n—1

replaced by #—2. We note that this process must finally yield the
solutions in the form

(12) A; = KE,, pi = dMM;

where the E; and also the M; are products of integers of Ra(p); all
the E;, and also all the M; are of course not independent but they
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are each independent of K.
The resolution of (3) now follows. Applying (5) to (3) yields

-1 n—1i
XX =0a;, %= — 2, abii+ 2 Girbisri
il jeel
fori=1,2,:- ., n.
Hence we must now solve the system of equations
X,-"X’.-=aa.- (i=1,2,-~,n).

The solution of the typical equation is
X; = pidiB;, ¢ = pidids,  ai= p:BB;

in free parameters p;, 4;, Bi.

Equating the value of @ yields the system (8) and hence by (12)
A;=KE;, p;=dM;M; and therefore the complete solution of (3) is
given by

i-1 n—1
(13) X; = KR, ¥ = — Z abi + E @iy ibiivi
sl Juul
for:=1, 2, + - -, n where
(14) i = dM ;M ;B;E;, a; = dM ;M ;B;B..

The resolution of (1) now follows. Put K =Fk;+pks, R;=r;+ps;;
then KR;+KR; =k (2r;—s;) —ks(ri+s;). Then all the X, x; satisfying
(3) and (4) simultaneously are given by (13) where values are as-
signed to the parameters which determine R;, a; in (14) and then
the (n2—n-+4)/2 unknowns ki, ks, b;; are determined from the #»
linear homogeneous equations

-1 n—1

(15) k(s — 53) — kalri + s3) + 22 abiv — 2 Gigibiivi =0
Juml J=1

fori=1, 2, - - -, n, a system of the type (6).

Substitute this value of X; in (2). Equate real and imaginary parts
and all the rational integer solutions of (1) with m=2# will be ob-
tained.

To solve (1) when m is odd, m =2n—1, we proceed much as above,
replacing system (15) by system (o) which is equivalent to (13) and
the equations

-1

BiQ2ri — 53) — ka(ri + 5) + 2 @i + D Gigibiiri =0

iml i=1
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fori=1,2,--.,n—1,

n—1
Bitn = kasa+ 2 0bjn =0, kS + ka(ra — 52) = 0,
Gl
a linear homogeneous system of #-+1 equations in (n2—n-+4)/2 un-
knowns ki, k2, bi;. The corresponding X; given by (13) are substituted
in (2) fori=1,2, - - ., n—1 and we put X,=22,1.
We conclude by exhibiting the complete solution of D ¢ ,28=0
in terms of integers of Ra(p).
The complete solution of p1A4;14;=psdsAs=psdsA;is given by (12)
where

M, =GHIT, M, = GFLN, Ms = LPST,
E, = CDFLNPQS, E,= CDHJPQST, E;= CDFGHJINQ,

and all the parameters are arbitrary. Hence from (14) we get the
corresponding values of a;, R; =r;+ps;, where d, B; are arbitrary. In
this case (15) is a linear homogeneous system of 3 equations in §
unknowns. To complete this linear system for resolution we adjoin the
single equation

mibeg + mabis + mabie + myks + mgks = 0

with arbitrary coefficients m;.
Hence with a;, 7;, s; as found above, (9) gives

ek, = t(ams — agmy + agms)(a1(ry + s1) + ax(r2 + s2) + as(rs + s3)),
eky = t(aymy — agmy + azmsz)(a1(2r1 — s1) + 2(272 — s2) + a3(275 — s3)).
Then from (2) and (13) for i=1, 2, 3

Z9i1 = kari — Siks, 22: = kari — 83) — Rors.
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