QUADRATIC FORMS OVER FIELDS WITH A VALUATION
WILLIAM H. DURFEE

1. Introduction. The problem of the representation of a number
by a quadratic form and of the equivalence of two such forms has
been solved by Hasse [2, 3, 4, 5]* for the case where the coefficient
field is the field of p-adic numbers. In this paper we consider the prob-
lem more generally for forms over any field with a non-archimedean
valuation subject to the restriction that the field is complete with
respect to the valuation and that its residue-class field has char-
acteristic not two. A complete solution is not obtained except under
certain further restrictions described below, but the general problem
is shown to be reducible to the case where the forms in question have
unit coefficients, and to be equivalent to the corresponding problem
previously studied by the author [1] for forms over valuation rings.
It is also shown that a form with unit coefficients represents zero if
and only if the image form over the residue-class field represents
zero, and similarly for the equivalence of two such forms.

In the latter part of the paper we obtain a complete solution for
forms over certain special fields. The Hilbert norm residue symbol is
introduced and conditions are given under which the Hasse function
¢(f) is invariant. With its aid the necessary and sufficient conditions
of Hasse, expressed, however, in an improved form due to Pall [7],
for the representation of zero and the equivalence of two forms over a
p-adic field are shown to apply more generally to forms over any com-
plete field with a valuation for which the residue-class field is finite
and has characteristic not two; for example, the field of formal power
series over a finite field of characteristic not two. We give a new
proof of the invariance of ¢(f) which is shorter than that given by
Hasse.

2. Definitions and notations. Let f= " a;x«; be a quadratic
form whose coefficients a;; are in an integral domain D. Let D’ be
any integral domain containing D and m any element of D. f is said
to represent m over D’ if there exist o; in D’ (¢=1, 2, - - -, n), not
all zero, such that Y aijoza;=m. If m=0, fis called a zero form over
D’. Let g= > %b.jy:y; be another form over D. f is said to be equivalent
to g over D', written f=g, if there is a linear transformation
xi= D> "y piy; (6=1, 2, -+, n), pij in D’, which carries f into g
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and such that the inverse transformation exists and has all its coeffi-
cients in D’. When explicit mention of D’ is omitted it will be under-
stood to be the same as D. The order % of f will be denoted by #(f).

It is easily shown [9, Theorem 15] that if D is a field the problem
of the representation of a nonzero element by a form of order # is
equivalent to the problem of the representation of zero by a form of
order n+1. In view of this and since we shall be working for the most
part with fields we shall consider only the latter problem.

We shall assume that all forms used are nonsingular. When we write
f+g for the sum of two forms it will always be understood that f and
g have no variables in common.

In this paper we shall take D to be either a field K with a non-
archimedean valuation V which is complete with respect to this
valuation and such that the characteristic of the residue-class field
K is not two, or its valuation ring R. Thus we can assume all forms
symmetric, that is, a;;=a;; for all 2 and j, and each equivalent to
some diagonal form [1, Theorem 1]. (For an exposition of the general
theory of valuations see [6, chap. 2] or [8, chap. 10].)

Use will often be made of Witt’s cancellation theorem [9, Theorem
4] which says that if f, g and % are forms over a field of characteristic
not two, then f4g=2f-+h implies g=2h. This was extended by the
author [1, Theorem 5] to forms over the valuation ring R.

The form (xi—a2)+(x2—aD)+ - - - +(x2_,—+3) will be denoted
by Hi. Then Hy=aH, over the field K for any nonzero a in K [9,
p. 34], and Witt showed that every zero form f could be expressed as
f=2f*+H, where f* is either vacuous or a nonzero form unique to
within an equivalence [9, Theorem 5]. If fo~H, we*shall call f a
totally zero form. We shall frequently omit the subscript on H when
there is no ambiguity about its length.

3. Forms over fields with a valuation. We shall now suppose that
the domain of coefficients of our forms and transformations is the
field K. @ will denote the homomorphic image in K of the element a
of R.

DEerFINITION. If £ is an even integer, by f=2g+ H} we mean f=2g+ Hy
if k>0, f=~gif =0, and g=2f+H_; if k<O0.

LeMMA 1. f—g=H )iy of and only if f=2g+Hugy—ne-

ProoF. Suppose #(f) =n(g). If f—g=H,()1nw), then

f—eg+g=f+ Houoy = g+ Huprnior

Cancelling an Hj,, from each side gives us the desired result. Con-
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versely, if f22g+H,(s)—n(), then
f— 8= g+ Hupynioy = = Haiy—nioy + Honcoy = Hughrn(or-
A similar argument disposes of the case n(f) <n(g).

LEMMA 2. If f= D % aix?, a; in K, is a zero form with " ao2 =0,
which has no zero subform, then Vaici = Va;dl for all i and j.

Proor. None of the a; can be zero since f has no zero subform. Re-
arrange the terms of f so that

2 2 2 2 2
Vaay = Vagag = + ++ = Varar < Varpiopp1 = 2+ ¢ S Vagan.
Then
2 2 2 2 2 2
V(gror + asas + - - - + a0) = V(@rprarp1 + « + - + apan) > Vasan.
Let b=ax02+ - - - +a,0? (b exists since we must have r=2 for f to

be a zero form). Hence V(1+4ba;'ar?) >0 and V(ba;'er?) =0. This
implies that the equation

#* + BaTiar? = 0

over K has the solutions +1 which are distinct since the character-
istic of K is different from two. By the Hensel-Rychlik theorem the
equation #2+ba;'ef?=0 has a solution B in K and therefore
ai(ouB)?+a 3+ - - - +a,02=0. Since f has no zero subform we
must have r=mn.

DEFINITION. Let a and b be nonzero elements of K. Then ¢ and b
are congruent, written a=2b, if there isa unit # of R such that a=2bu.

DEFINITION. A diagonal form > %ax? will be called a unit form if
Va;=0 for all <.

DEFINITION. A form of the type Y i..b:f:, where b;5b; for 15 and
each f; is a unit form, is called a standard form.

Every nonsingular diagonal form over K is equivalent to a stand-
ard form under transformations of the type x;="5.y; and a rearrange-
ment of terms.

THEOREM 1. A standard form f= Y i, a:f: over K is a zero form if
and only if at least one of the f; is a zero form.

PRroOOF. Suppose f is a zero form. Let g be a zero subform of f which
does not contain a proper zero subform. g may possibly be f itself.
Write g as g= D _a,g;, where the a; are certain of the a; and each g;
is a subform of some f;, such an f; contributing only the one sub-
form g;, if any. Let gj= D a5, Vaj;=0 for all 7 and k. Then
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>iai( 2okaal) =0 for some aj; in K. By Lemma 2, V(gjapa?)
= V(amamosd,;) for each j and m. Therefore a;=a.,. But, since f is a
standard form, this can happen only if m =j. Hence g must be a sub-
form of some a;f; and this f; will be a zero form. The converse is ob-
vious.

COROLLARY. A standard form f= Y ;_.a:f: over K is a totally zero
form if and only if each of the f; is a totally zero form.

Proor. By the above theorem at least one of the f;, say fi, is a
zero form and therefore a,fi=fa,fi+H.. Since f=2H,y we have
arfi+Hy+ Y haifi2H, . Cancelling an H, from each side leaves us
arfi+ D 5aifi&2H, s _s. By repeating the argument we have eventually
fi—an(f.-) for all 2.

In certain important cases, such as p-adic fields, p an odd prime,
K has the property that ax?+4by? represents 1 whenever Va= Vb=0.
When this is true we have the following simple criterion for the repre-
sentation of zero by a given form f.

THEOREM 2. If K has the property mentioned above, then the diagonal
form f represents zero if and only if it contains a binary subform ax?-+by?
with —ab a square in K or a ternary subform ax®+by*+cz? witha=b=c.

ProOOF. By transformations of the type x; =d;y; and by a rearrange-
ment of terms we can express f in a standard form f= Y 1b,f:. If f is
a zero form, then by the preceding theorem some f;, say fi, is a zero
form. If f; is the binary a’x*+b’y?, we must have —a’b’ a square and
hence if ax?+by? is the corresponding binary subform of f, —ab is
also a square. If f; has order greater than two, it has a ternary sub-
form ¢, +cx2+cx2 with Ve; =0 which by our assumption on K
represents zero. Since the bic; have equal values the corresponding
coefficients of f are congruent to each other. Conversely, if —abis a
square for some binary subform ax?+by? of f, this binary, and hence f,
will represent zero. If the ternary subform g=ax®+by?+cz® has
a=b=c, then b=au,c’ and ¢=au,c; for some units %, and %, and
hence g=a(x*+u1y®+us2?). Since the ternary in the brackets repre-
sents zero so does f.

THEOREM 3. Let f= D a:fi and g= D _ib;g; be equivalent standard
forms over K. If for a given a; there is a b; such that a;=b;, then this b;
is unique and fi=u;g;+H, where u; is the unit defined by b;=a.cju;.
If there is no such b;, then f;=2H, and similarly if, for a given b, by
#a, for all 1, then g,=2H.

Proor. If there is a b; such that ¢;=b4;, it must be unique since the
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relation of congruence is transitive. Rearrange the terms of f and g
so that a;=b; (¢=1,2, -« -, ¢8), a;#b; (4, j>¢). Then, using Lemma 1,

Hf—ge= Zat(ft - Cz%ng + Z afi + Eb,g,

41
By the corollary to Theorem 1, f,—cfu¢g4=H (t=1, 2, --,0),
fi2H (i=t+1,---,7), g;=H (j=t+1,:-::,s). By Lemma 1
figcfuigi—kﬂguigi'{_H (7:=11 21 Tty t)-
As a converse of this theorem we have the following theorem.

THEOREM 4. Let f= D ia:f: and g= D _%b;g; be standard forms over
K. f is equivalent to g if

@) Zun(f)= in(z),

(i) ai=b; implies fi=2u;g;+Huisp—ncwy, Where u;j is the unit defined
by b;=a,cju,

(iii) for a given ai, a;#b; for all j implies fi=H,y,, and for a given
by, bxFEaq for all I implies gr=2H,(g,). )

ProoF. Rearrange the terms of f and g so that a;=b;
(4=1, 2, - - -, 1), a:52b; (¢, 7>1). Then

f" = uigs + Hn(f.')—n(ai) (7: =12-.--., t)r
fi= Hayy and g = Hn(a/) (3,7 >0).

Z aifi &2 E (@imigs + ailniry—ncon) + Z @il

IR

bigi + E @iHnyy + E @H_pg;

11

¢
>

1

¢
Z igi + Z biHncop + 2 biH—n(u,')

1 1 1

i 8
2b

1

¢
>

1

R

igs + Z biHn(aj)
t+1

R

bigi + Z bigi = Z bigi
t+1

For fields K in which it is possible to tell whether or not any two
given elements are congruent, Theorems 1, 3 and 4 reduce the prob-
lem of the representation of a given element in K by a given form and
of the equivalence of two forms to the case of unit forms. In an
earlier paper [1, Theorem 4] we performed a similar reduction for
forms over valuation rings. We shall now show that the two prob-
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lems are equivalent by proving (Theorem 5) that two unit forms are
equivalent over the field K if and only if they are equivalent over the
valuation ring R.

First we extend to forms over valuation rings some of the ele-
mentary properties of forms over general fields.

If f and g are forms over R, then f~g will mean that f is equivalent
to g over R, while f=g will stand for equivalence over K.

LEmMMA 3. If f= D tax?, Vai=Va; =0 (all 4, j), represents zero
over K, and b is any element of R for which Vb= Vai, then f=<by; —by3
(Y3, Y4y + ¢ ¢, Vn), wWhere ¢ is a quadratic form over R. Hence f repre-
sents b over R.

ProOF. Let Y a,02=0, o; in K. We can assume that V20 for
all 7 and that some «;, say a1, has Vay =0. Since f is a zero form, some
other «, say as, must also have Vap=0. The transformation over R

X1 = a3y, xi=aztam (E=2, 3,---,n)

is unimodular and carries f into

n n
2
1) 2210 Giouzi + 2 aizi
(] =2
Next apply the unimodular transformation
n
w1 =21, W= b1, ajaiz;, Wi =% G=34,---,n)
i=2

which takes (1) into

b 2 2
(2 bw2(2w1 +—F we— —5 2 aidi'“’i) + dlws, wa, + + -, wa),

Qg0 Q203 j=3
where ¢ is a form over R. The unimodular transformation
b

2 n
1)1=2w1+ 2W2————{Zdja5w,', Vi = W; ('i=2,3,~-,n)
[12%:7) Q2002 =3

carries (2) into
3) bvyws + d(vs, 04y - - ¢, ).
Finally the unimodular transformation
n=y+y v=y—23y v=y (=34 -,n
will take (3) into by2 —by2+d(¥s, Yar * * *  Yn)-
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LeMMmA 4. If f= Z’fa‘x?, Va;=Va;=0 (all <, j), represents over K
any b for which Vb= Va,, then f represents b over R and f=by:
+Y(y2, ¥s, ¢+ ¢, Ya), Where Y is a quadratic form over R.

PrOOF. Let ) aof=b, a; in K. Then Y ax?—b2? is a zero form
over K, and by Lemma 3

i 2 2 2 2

> aixi — bz by, — bz -+ Y(¥a ¥s, c + + , V).

t=l
By Witt's theorem for forms over a valuation ring we can cancel
—bz? from each side giving us fo~by2+y¥(ys, 5, * * * » Pn)-

THEOREM 5. Two unit forms are equivalent over K if and only if they
are equivalent over R.

Proor. The condition is obviously sufficient. Let the two forms be

f=> ;. and g= 2 b, Va; = Vb; = 0 for all 4,
dmal fa=1
and assume f=2g. We shall use induction on the order # of f. The
theorem is true for unary forms. Suppose that it is true for forms of

order n—1. Since f represents a, over R, g represents a; over K and
by Lemma 4

n
2 2
I Xy -l- E Ci%;
=2
for some c;. Since the values of corresponding terms are invariant

under a transformation over R [1, Lemma 2], Ve;=0 for all 4. Ap-
plying Witt’s cancellation theorem for forms over a field we have

i 2 id 2
E aix; = Z Ci%;

=2 =2

which with the induction hypothesis gives us

n n
Z a;x:'%’ Z c.-x:.
=2 =2
From this it follows that f=<g.

We shall now show how the equivalence of two unit forms and the
representation of zero by a unit form are connected with correspond-
ing problems for related forms over the residue-class field.

If fis a form D _rax? over R, then f will stand for the form > tdx’
over the residue-class field X.
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THEOREM 6. If f and g are unit forms, then f=2g over K if and only
if f=z over K.

A proof of this theorem is given in [1, Lemma 1 and Theorem 2].

THEOREM 7. A unit form f is a zero form over K if and only if f is a
zero form over K.

PROOF. Let f= D 2ax?, Va;=0, for all 4. If f is a zero form over K,
then there are «; in K (4=1, 2, - - -, u), not all zero, such that
> a0?=0. We can assume that Ve; =0 for all ¢ and that some a,
say oy, has Vay=0. Then Y aa=0 with & 0.

Conversely, suppose that f is a zero form over K. Then there are
a;in K (=1, 2, - - -, m), not all equal to 0, such that ) aa%=0.
Suppose that Va; =0 (=1, 2, - - -, ) and Va; >0 for ¢>r, where a;
is an antecedent in R of &;. Since not all the &; are zero, = 2. There-
fore V(a,03+a,03+ - - - +a,08)>Va,o?, and as in the proof of
Lemma 2 there is a nonzero 8 in K such that a;(cy8)?+a,03+ - - -
~+a,02=0. Thus f is a zero form over K.

COROLLARY. If the unit form f represents over K any m in K for which
Vm>min Vo, where D a,02=m, then f is a zero form over K.

PRrOOF. Let Vay=min Vey. Then D a:(of o)t =am. Viay2m) >0
and hence ). dj} is a zero form over K.

4. The Hasse function. The problem of determining when a form
represents zero and when two forms are equivalent was solved for
the p-adic case by Hasse. He made extensive use of the Hilbert norm
residue symbol. We shall show that his results do not depend on
having a p-adic field for a base but can be extended to any complete
field with a discrete valuation whose residue-class field has char-
acteristic not two, and having the property that the product of any
two non-square units is a square and that ex?4-by?=1 has a solution
whenever @ and b are both units of R. An example of such a field is
the one obtained by completing with respect to any one of its valua-
tions the field of rational functions over a finite field of characteristic
not two.

DEeFINITION. If ax?+by? is a form over K with @ and b not zero, we
define the function (a, b) to have the value 1 or —1 according as the
form does or does not represent 1 over K.

It is obvious that (a, b) =(b, a), (@, —a) =1 and that (g, b) =1 if
a or b is the square of an element in K.

LEMMA 5. Let a and b be non-squares. Then
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(i) as£b implies (a, b) = —1,
(ii) a1, b#1 implies (a, b) =1 if and only if —ab is a square.

ProOF. Let f=ax?+by*—2z2. If a#b, the only possible standard
forms of f are (ax?—2%) +b(y?), (by?—22) +a(x?) or a(x?) +b(y%) 4+ (—2?).
By Theorem 1 if f is a zero form, at least one of the bracketed sub-
forms must be a zero form. But this is impossible for each of the three
possibilities. Hence (a, b) = —1.

If a1, and b1, the only possible standard forms of f are
a\x®+ba='y?) +(—2?) or a(x?) +b(y?) +(—22). If —ab is a square then
1 is a zero form. Conversely, if f is a zero form, then the first of the
above possibilities for a standard form is the correct one and, by
Theorem 1, x2-4ba—'y? must be a zero form, implying that —ab is a
square.

From now on we shall assume that the valuation of K is discrete
with the integers as the value group. ¢ will denote an element whose
value is one.

LEMMA 6. The product rule (a, b)(a, ¢) =(a, bc) holds for all nonzero
a, b and c in K if and only if the product of every two non-square units
is a square and Va=Vb=0 implies (a, b) =1.

PRrOOF. Suppose that, for all nonzero a, b and ¢, (e, b)(a, ¢) =(a, bc).
If a or b is a square, (a, ) =1. Hence let a and b be two non-square
units. Chose ¢ such that Vt=1. Since Va=Vb=0, t5#a, t#b, tab
and, by Lemma 5, (¢, a) = (¢, b) = (ta, b) = — 1. The product rule gives
us (¢, b)(ta, b) =(a, b) =1. Also (¢, a)(t, b) = (¢, ab) =1, and since t#ab
we have by Lemma 5 that ab is a square.

Conversely, suppose that the product of two non-square units is a
square and that Va= Vb=0 implies (e, b) =1. If (%1, ¥, 1) is a solu-
tion of ax?+by?*—22=0 and (%2, ¥z, 1) a solution of ax?+cy?—3z2=0,
then (x1—x2, y1y2, 1 —axixz) is a solution of ax?+bcy*—3z2=0. It is
well known [9, p. 39]that if a form represents zerowithsome zero terms
in the solution, then there is a solution in which none of the terms is
zero. Thus (a, b) = (a, ¢) =1 implies (a, bc) =1. Suppose that (a, b) =1
and (a, ¢)=—1. If (a, bc)=1, then by the case just discussed,
(a, bc)(a, b) =(a, ¢) =1, a contradiction. Hence (a, bc) = — 1. Similarly
(a, b)=—1 and (a, ¢)=1 imply (a, bc) = —1. Suppose finally that
(a, b) =(a, ¢)=—1. Then a, b and ¢ are non-squares. In view of our
assumption that Va= Vb=0 implies (a, b) =1 we need consider only
the following cases:

Case 1. Va=0, Vb= Vc=1.

Let b=tv, c=tw, where Vi=1, Then Vyv=Vw=0 and (e, bc)
=(a, vw) =1.
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Case 2. Va=1, Vb=Vc=

bc is a square and (a, bc) =1.

Case 3. Va=Vb=1, Vc=

Let a=tu, b=1tv. Then Vu= Vv=0. (a, b) = —1 implies by Lemma 5
that —ab and hence —uv is a non-square. Therefore —uvc and —abc
are squares and by Lemma 5 again (g, bc) =1.

The case Va=1, Vb=0, Vc=1 is treated similarly.

Case 4. Va=Vb="Vc=1.

Let a=tu, b=1tv, c=tw. Then Vu=Vv=Vw=0. As in the pre-
ceding case (a, b) =(a, ¢) = —1 implies that —%v and —uw are non-
squares. Hence vw and bc are squares, and (e, bc) =1.

This establishes the product rule.

THEOREM 8. If K is a finite field with p™ elements, p an odd prime,
then the product rule (a, b)(a, ¢) =(a, bc) holds in K for all nonzero
a, band c.

ProoF. The nonzero elements of K form under multiplication a
cyclic group of order pm—1. If 4 is a generator of this group, the
p™ elements of K can be listed as 0, #, 72, - - -, #* —'=1. If an odd
power of i were a square, then 72 would exist in K and we should
have #2= 4" for some £k, 1<h< pm—-l. This implies that 7=4#? and
hence that 2k=1 (mod p™—1), an impossibility, since p™—1 is even.
Thus K has exactly 14 (p™—1)/2 squares and the product of two
non-squares of K is a square. Using Theorem 7 we see that the
product of two non-square units of K will be a square. Suppose now
that Va=Vb=0, and consider ax*+by?=1. x?, and hence ax?—1,
takes on 14 (pm™—1)/2 different values as x runs through all values of
K. Similarly so does —by2. Two of these must be equal if we are not
to have pm+1 different elements in K. Therefore dx?+5y*=1 has a
solution in K which obviously is not (0, 0). Hence by Theorem 7
ax*+by?=1 has a solution in K. From Lemma 6 it follows that the
product rule is valid in K.

We shall now assume that not only is the valuation of K discrete
but also that the product rule holds in K. Under these two assump-
tions it is possible to obtain a complete set of criteria for the repre-
sentation of zero by a given form and for the equivalence of two forms
in terms of the Hasse invariants. The conditions are the same as
those for forms over the p-adic numbers as given first by Hasse [2 and
3, Theorem 2] and recently in a more convenient form by Pall [7].

For any nonsingular diagonal form f= ) %ax} we define the func-
tion, with the values +1,
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n
e(f) = TI (= diy, do),
i1
where d;=aia3 - - - a;if =1 and dy=1. This function was introduced
by Hasse, his definition, though different, being equivalent to ours.
It is easily shown that if f and g are diagonal forms with no variables
in common that

€ o(f + 8 = c(Ne@)(| 7], | ],
where |f| is the determinant of f, and for any nonzero m
©) slmf) = (m, (= Dz f|=0)o(f),

THEOREM 9. If f and g are equivalent diagonal forms, then c(f) =c(g).

Proor. Replacing any coefficient a in f by ac? for any nonzero ¢
obviously does not change c(f). If we interchange two adjacent
terms of f, say the jth and (j+1)th, the only change in the expression
for ¢(f) will be to replace (—d;., d;) (—d;, djt1) by (—dju, Dj)
-(—Dj, d;11), where D;=a1as « * * @;10j41. If we use the relation
D;=d;a;.aj", it is easy to show that these two products are equal
and hence that ¢(f) is unchanged. By transformations of these two
simple types we can express f and g in their standard forms: f22f;+fs,
g=2g1+1g,, where V() =1 and the forms f; and g; have unit coeffi-
cients, and have c¢(f) =c(fi+if2), c(g) =c(gi+itg). If fi, fo, g1, g2 all
exist, then ¢(f;) =c(g:) =1 (¢=1, 2) and by (4) and (5)

o(f) = o(fr + tfr) = cCtf)(| fl, | #e])
= (¢, (= Dreon| (| fi], 2] fa] )
= (¢, (= Drewe| fl(] £, ),
o(g) = ogr + tg2) = (4, (— 1)+ gy [+)(| gy ], 29),

where 7 and s are the respective orders of f, and g.. By Theorem 3,
assuming without loss in generality that r<s, we have fi~2g+H,,,
g22fo+H, , (since the valuation is discrete we can take #;=1 in
Theorem 3). Let h=|H,,|=(—1)¢"2 Then |g|=|fi|k, |g
glle k and

o(@) = (@ (= Drw+r| plevpesny(| fu] b, 27),

since s—7 is even. If » =s, this will still be correct, though H does not
exist, provided we take k=1. ¢(f)c(g) =, (—1)*)(k, ¢) where

v=[rr+ 1D +s6s+ 1)+ =2+ 1]/2=7r@—5)/2 (mod 2).
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If , and hence s, is even, then so is ¥ and ¢(f)c(g) =1. If 7 is odd,

c(fe(g) = (¢, (= 1=z

which is unity since v+ (s—7)/2 is even. If any of fi, fz, g1 or gs are
non-existent, a similar argument can be used to show that in these
cases too c¢(f) =c(g).

THEOREM 10. 4 form of f order n is a zero form if and only if for

n=2, — | f| is a square,
n=3  f) =1,
n=4, of) =1 or |f| isnot asquare,

n 5, always.

PrOOF. n=2: Let f=a,x +a,x2. If f is a zero form, then (x;x;")®
= —g;'a,and — | f ] is a square. Conversely, if — l f l is a square, then
x1=(—a182)'?, x2=a; is a zero of f.

n=3: Let f=ax7+a,x2+azx:. A short computation shows that
c(f) =(—a1as, —a1as). If f is a zero form, let £, 7, ¢ be a solution of
f=0. We can assume £7#0. Then x=7(a:£)", y={(a:£)"! is a solu-
tion of

6) — 010282 — @103y% = 1.

Conversely, if ¢(f)=1, then (6) has a solution and hence so has
0303+ a3 = — ;%]

n=4: Let f=a,x’+a,x3+axi+axs. We can assume Va;=0 or 1.
Suppose f is a zero form. If Va;=0 for all 4, then c(f) =1. If, for some
1, Va0, then by Theorem 1 either some binary or ternary subform
with coefficients of like value must represent zero. In the former case
let f =f1-+f;. If both the binary subforms f; and f; represent zero, then
f=H, and ¢(f)=1. If fi is the only binary representing zero, then
—|f1| is a square while —|f,| is not a square. Hence |f| is not a
square. Returning to the other possibility let g be the ternary sub-
form representing zero. By the preceding case for =3, ¢(g)=1. If
f=ax?4g, then, by (4), ¢(f) =(a, Ifl)c(g)=(a, lfl). If ¢(f) 1, then
|#| cannot be a square. Conversely, suppose ¢(f) =1 or |f| is not a
square. We can assume that f has a standard form f=¢f;+#f;, where
fi=bxi+bx3 and fo=byxi+bxi, Vb;=0 for all 4, since any other
possible standard form for f would imply that f had a ternary sub-
form with coefficients of like value which would by Theorem 2 repre-
sent zero. Using (4) we have c¢(f) =(¢, —bsbs). If ¢(f) =1, then, by
Lemma 5, —bsbs is a square, and so f» and hence f is a zero form.
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|| =2(—b1b2) (—bsbs). If |f| is not a square, then either —bb; or
—bsb, must be a square implying again that f is a zero form.

n=5: Since f must contain a ternary subform with coefficients of
like value, it is a zero form by Theorem 2.

TuaEOREM 11. Two nonsingular forms f and g of order n are equiva-
lent if and only if [f| gl g[ and c(f) =c(g).

Proor. We have already shown the necessity of these conditions.
Suppose now that I f [ -E{ g| and ¢(f) =c(g). We use induction on .
The theorem is true for #» =1. Suppose it true for forms of order n—1.
Write f as f =ax?--f’, where a is the leading coefficient of f and f’ is a
form of order n—1. Using (4) we have

of —ax?) = (— @, — |f|.)c(j) = ¢(g — ax?).

Since f—ax? represents zero, we have by Theorem 10 that so does
g—ax? for any n. g then represents ¢ and can be written g=2ax?+g’,
where g’ is a form of order n—1. By (4)

cf) = (= L, ae(f)a | f1) e =(—1,a)eE)a, | &])
Therefore ¢(f’) =¢(g’) since |f'|=¢|g’ ] . By the induction hypothesis
f'=2g’ and hence f=<g.

Since the product of two non-square units is a square, every unit of
K is equivalent either to 1 or to some arbitrary but fixed non-square
unit ». Also vx%-4vy?, since it represents 1, is equivalent by Lemma 4
to x2+32 Thus every form f of order # is equivalent to

2 2 2 2 2 2 2 2
(7) 14 %24 -+ 21+ o, + t%rp1 + t2rya + e Gt tbxm
where @ and b are 1 or ».

THEOREM 12. Expression (7) s a canonical form for f.

Proor. We need to show only that two different expressions of
form (7) are inequivalent. Let

2 2 2 2 2 2 2 2
it oyt F oyt dyet iyt vt ity yn
be another form of this type. If they were equivalent, we could

cancel like terms and get
aoc,2 -+ tbx: ~q yf -+ &b’ yf,.

Theorem 3 now implies that a =a’ and b=b".
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