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Introduction. In this paper, we relate the existence of Radically 
integral, linear transformations taking a quadratic form ƒ in m vari­
ables into a quadratic form g in n variables with the representation 
of g by ƒ rationally without essential denominator. Before stating our 
result, we introduce some terminology and recall some known 
theorems on the subject. 

We denote by R, R^, and Rp respectively the rational field, the 
real field, and the £-adic field for p an arbitrary, fixed prime. We 
also designate the ring of rational integers by / and the ring of p-adic 
integers by Jp. We recall the definition that a form ƒ, with matrix in 
/ , represents a form g, with matrix in ƒ, rationally without essential 
denominator, if, for every positive, rational integer q, ƒ may be taken 
into g by a linear transformation whose elements are rational num­
bers with denominators relatively prime to q. 

We assume throughout this paper that any considered transforma­
tion is linear and that the matrix of any considered quadratic form is 
nonsingular and has elements in / , unless otherwise specified. We 
shall feel free to phrase theorems and proofs either in terms of the 
matrix of a form or in terms of the form itself. 

It was proved by Helmut Hasse [l, pp. 205-224]2 that if ƒ and g 
are quadratic forms with the same number of variables, the existence 
of transformations in all Rp and in i?», each taking ƒ into g, implies 
the existence of such a transformation in R. He later [2, pp. 12-24] 
extended the theorem to the case where ƒ and g do not necessarily 
contain the same number of variables.3 Then C. L. Siegel [5, pp. 678-
680] proved that if ƒ and g contain the same number of variables, the 
existence of transformations in all Jp and in i?^, each taking ƒ into g, 
implies that ƒ represents g rationally without essential denominator. 
We now wish to extend this theorem of Siegel to the case where ƒ 
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1 The material of this paper comes from a thesis, written under the direction of 
Professor Burton W. Jones, and presented to the Graduate School of Cornell Uni­
versity for the degree of Doctor of Philosophy. 

2 Numbers in brackets refer to the references cited at the end of the paper. 
3 The reader is also referred to a proof by C. L. Siegel [6, p. 549]. 
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and g do not necessarily contain the same number of variables. 
Siegel's proof must be modified to give the extension, as it uses, to a 
large degree, square matrices and their inverses, which do not exist 
in case ƒ and g contain different numbers of variables. We now state 
the extension theorem formally. Its proof and a corollary will then 
occupy the remainder of the paper. 

THEOREM. Let S and T be symmetric, nonsingular matrices in J, of 
orders m and n, respectively. If there exists a transformation in each Jp 

and a transformation in Rw, each taking S into T, then S represents T 
rationally without essential denominator. 

1. Canonical forms for quadratic forms with matrices in J2. In the 
proof of the theorem, we use canonical forms for quadratic forms with 
matrices in J2. B. W. Jones [3, pp. 726-727] and Gordon Pall [4, pp. 
35-38] have established canonical forms, modulo an arbitrary, fixed 
power of 2, for quadratic forms with matrices in / . By slight modifica­
tions of their respective theorems and proofs, we obtain the following 
results, designated as Lemmas 1, 2, and 3. 

LEMMA 1. Any quadratic form in s variables, with matrix in J2, is 
equivalent in J2 to a form, 

0 = 2«*0x + h 2°kdk, 

where 0i, • • • , 0* are quadratic forms, each with matrix in J2 having a 
2-adic unit determinant, and each in variables different from those of 
the remaining forms; and where the e» are in J (0^ei<e2< • • • <£&). 

LEMMA 2. Let 0 be a quadratic form in t variables, with matrix in J2 

having a 2-adic unit determinant. Then either 0 is equivalent in J2 to a 
form of the type 

2 2 

a\X\ - } - • • • + atxt, 

where the ai are units in J2; or 0 is equivalent in J2 to a form of the 
type 

2 2 2 2 

2{b\Xi + CiXiX2 + dix2) + • • • + 2(brXtr-i + crxt-ixt + drxt), 

where the bi and d are units in J2, and the di are in J2. 

LEMMA 3. Every form 2bx\+2cxix2+2dxl, in which c is a unit in 
J2, and b and d are in J2, is equivalent in J2 either to 

2 2 

(1.1) 2#i#2 or 2x\ + 2x\x2 + 2x2, 

according as bd is not a unit or is a unit. 
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We now combine Lemmas 1,2, and 3 to see that for any quadratic 
form with matrix in J*, there exists an equivalent form in J 2 of one 
of the following kinds: (1) a diagonal matrix; (2) a matrix with powers 
of 2 times the matrices of binary quadratic forms of type (1.1) on 
the principal diagonal and O's elsewhere; and (3) a matrix which is 
a mixture of (1) and (2), containing matrices of both unary and 
binary quadratic forms on its principal diagonal and O's elsewhere. 

2. The main lemma for the proof of the theorem. In this section, 
we state and prove the main lemma used in the proof of the theorem. 
We shall use of the results of §1, as well as the following two theorems 
from a paper of Siegel [6, pp. 536, 538], designated as Lemmas 4 and 
5. 

LEMMA 4. Let S and T be symmetric matrices in J, of orders m and n, 
respectively. Let P designate any one of the fields R, R^, and Rp. Then if 
Co S Co = Tisa representation of T by S in P, then each other representa­
tion CSC = T in P, for which (Co SC — T)"1 exists, can be written in the 
form, 

(2.1) C = Co + 2M(N - M'SMyW'SC0, 

where N is an n by n skew-symmetric matrix in P and M is an m by n 
matrix in P. If, conversely, N is a skew-symmetric matrix in P and M 
is an arbitrary matrix in P,for which (N — M'SM)"1 exists, then (2.1) 
furnishes a solution of CSC — T. 

LEMMA 5. For every symmetric matrix in Jp, there exists an auto­
morph in Jp of determinant — 1. 

We wish now to prove the following lemma: 

LEMMA 6. Let a prime p be given. Let S in J and T in Jp be non-
singular, symmetric matrices, of orders m and n, respectively. If B in 
Rp and Bp in Jp are transformations taking S into T, then there is an 
automorph of T in Jv, say Ap, such that Ëp = BpAp takes S into T and 
\B'SBp-T\5*0. 

We prove Lemma 6 by induction on n, finding it necessary to prove 
it first for n = 1 and n = 2. 

Case I. n = l. When n = l, T and B'SBp are scalars. If B'SBp^T, 
we choose BP = BP; if B'SBP~T, we choose Sp=—Bp. Since T is 
nonsingular, we then surely have \B'SËP— T\ 9^0. 

Case I I . n = 2. If \B'SBP-T\ 7*0, we set EP = BP. If \B'SBP-T\ 

= 0, we may take Bp= -Bp, providing that | -B'SBP-T\ ?*0. If 
both \B'SBp-T\ = 0 and | -B'SBP-T\ = 0 , we may add the ex-
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pansions of the determinants to get | BfSBp\ = — | T\. In this case, 
we use Lemma 5 to find an automorph of T in Jpy say Lp, with 
\LP\ = — 1. Then, since | T\ T^O, 

| B'SBJL, | = - | B'SBP | ^ - | T | . 

Thus, at least one of \B'SBPLP — T\ and | — BfSBpLp—T\ is dif­
ferent from zero, and we can define Bp accordingly. 

Case III. n^3. If £ is odd, we assume the lemma true for n — 1 and 
proceed to show it holds for n. By a well known theorem,4 since p is 
odd, there exists a unimodular transformation, say Cp, in JPf taking T 
into a form, 

where Ç«0 is an n — 1 by n — 1 matrix in / p and ga is a scalar in Jp . 
If p is even, we use the results of §1 to obtain a canonical form in 

J% for T in J2. The first possibility mentioned there, (1), gives us the 
same kind of form Qa that we have just indicated for an odd p, and 
we handle (1) exactly as the case for p odd. To treat (2), we proceed 
with an induction proof, assuming the theorem for n — 2 and proving 
it for n. We rely here upon the fact that the lemma has been proved 
for both n~\ and n = 2. For the third possibility, we may surely 
make an induction proof, for which, at each stage of the induction, 
either the treatment for (1) or that for (2) will be suitable. 

We consider now the proof for (2), wherein the theorem is assumed 
true for n — 2 and is to be proved for n. From the previous discussion 
we know there exists a unimodular transformation, C2, in J2, taking T 
into a form Qb which is schematically either 

/2k 0 , _ , _ . . 

(i) 2* 
2 1 

I 1 2 . . 

where Qb0 is an n — 2 by n — 2 matrix in J2 and k is a non-negative, 
rational integer. Form (ii) follows directly from (1.1), since the uni­
modular matrix 

(.: 1) 
4 For a proof of this theorem, see, for example, C. L. Siegel [6, p. 535]. In the 

statement of Siegel's lemma, Rp should be replaced by G> 

or (ii) 
y&o/^K u 

2 S 

5 12 
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takes 

\ 5 12/ i n t ° \ 1 0 / 

We proceed now, regardless of the parity of p. Let Q designate 
appropriately Qa or Qb, Q0 either Qa0 or Qbo, and q the appropriate one of 

«- K Î D' a°d 2'C o)' 
We now define V=BCP and V9 = BPCP, noting that V'SV 

= VP SVP = Q. If we partition V and Vp into F=(Z7, w) and 
VP = (W, w), where u and w each designate a unicolumnar matrix in 
case g is a scalar and each a duocolumnar matrix in case q is a 2 by 2 
matrix, we see readily that U'SU = W'SW= Qo, that tf'Sti = W'Sw = 0 
and that u'Su — w'Sw = #. 

Then by the hypothesis of our induction, with B replaced by U, 
Bp by W, and T by Q0, we see that there exists an automorph, say 
H, in Jp of Qo, such that for 1^ = Wff, it is true that 

(2.2) | U'SW -Qo\ ^ 0 . 

We take w = wL, where L is an automorph of q in J to be chosen 
later, and VP = (W, # ) . Then W'Sw = 0 implies 2TI^'SwZ, = 0; that is, 
W^Sw = 0. Thus, since surely T ^ / 5 # = H'Q0H=Qo and w'Sw = q, 
we have 7 / S F ^ Q . Now, schematically, 

(2.3) I V * { ' 
__ I U'SW - öo ^ ' S ^ I 

I u'SW u'Sw-q\ 

If q is of form ga, we take L successively equal to + 1 and — 1. Thus 
we first assume w — w, whence expansion of the above determinant, 
(2.3), by the last column will give us 

(u'Sw - q) | U'SW -Qo\ + K, 

where if is a linear combination of the elements of w. If, on the 
other hand, we assume that w=— w, we see that the above de­
terminant becomes 

( - u'Sw - q) | U'SW - Qo | ~ K. 

The sum of these two determinants is — 2q\ U'S1W — Qo\, which is 
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nonzero, since the nonsingularity of T implies q?*0 and (2.2) tells us 
that | U'SW — (?o| 5^0. Thus, at least one of the two determinants is 
different from zero. 

If q is of form (i), namely, 

we take L successively equal to 

/ l 0 \ / - l 0 \ 
(a) (o i)< « ( o - , ) , 

If q is of form (ii), namely, 

we take L successively equal to 

M Ci)' <w ("ô-i)-
M ( j_^ , .„a (d0 (-;-;). 

That the Z/s are indeed automorphs of the respective q's may be veri­
fied directly. 

If we add the determinants, obtained from (2.3), for the values of L 
given by (a), (b), (c),and (d), wefindtheirsumis3-22*+2 | U'SW-Q*\. 
If we add the determinants, obtained from (2.3), for the values 
of L given by (a'), (b')> (c')> and Cd'), we find their sum is 
-22*+2 | U'Sff-Qo\. From (2.2), | U'SW-Q0\ 9*0, so that at least 
one of the determinants in the first sum and one of the determinants 
in the second sum are different from zero. 

We have thus shown that in case q is of the form 

•- Kl D' °' 2'C 12> 
we may choose w appropriately so that 

(2.4) \WSVP-Q\*0. 
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Now 

or denoting 

Q 
by £>, we have Vp~ VPD, where D is an obvious automorph of Q in 
JP. 

We then have 

(2.5) V'S?P - Q = V'SVpD - Q = ClB'SBvCpD - Q. 
Multiplying (2.5) on the left by (C/)""4 and on the right by C~\ and 
using (2.4), we have 

| B'SBpiCpDct) - T | ^ 0. 
Noting that CpDCp1 is an automorph of T in Jp, we define 
Bp = Bp(CpDCp1), and this completes the basis for our induction. 

3. Proof of the theorem. To prove the theorem, we shall use 
Lemmas 4 and 6, as well as the theorem of Hasse, referred to in the 
introduction. We proceed with the proof. 

Since the hypotheses of the theorem satisfy the conditions of 
Hasse's theorem, there exists a rational transformation, say J3, tak­
ing S into T. Since T in J is in each Jp, Lemma 6 is applicable, so that 
there is a Sp in each Jp, such that Ëp SBP = T and 

(3.1) \B'SBP- T\ T*0. 

Now let q be any given, positive, rational integer and p a prime 
factor of q. Then using Lemma 4, by virtue of (3.1), we see that for 
each p, there exists a skew-symmetric matrix Np in Rp and a matrix 
Mp in Rp such that 

(3.2) Bp = B + 2Mp(Np - Mp'SMp)-'lM;SB. 

If |3 is an arbitrarily large rational integer, by the Chinese Re­
mainder Theorem, we can find a matrix M in R> satisfying the con­
gruence M=Mp (mod pP), for all prime factors p of q, and a skew-
symmetric matrix N in JR, satisfying the congruence N^NP (mod ^ ) . 
Now Lemma 4 implies the existence of (Np — MpSMp)*1 for each £; 
hence, | Np — Mp' SMP\ 5*0. We then have, for /3 sufficiently large, 
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I N - M'SM | m | Np - M;SMP I y* 0 (mod jfi) 

for any p. Thus, | iV-.M'SJIf| 5*0. 
Now we define a matrix B in J?, 

(3.3) 5 = B + 2M(N - MfSM)-~lM'SB. 

Since 5 P has £-adic integers as elements, then, by virtue of (3.2) 
and (3.3), for j3 sufficiently large, 5 is Radically integral for all 
prime factors p of q. This means that the denominators of the ele­
ments of B are relatively prime to q. Finally, if we use (3.3) in Lemma 
4, we see that B takes S into T. 

4. An application of the theorem. We now prove an immediate 
corollary of the theorem. 

COROLLARY. If S and T are symmetric^ nonsingular matrices in J, 
of orders m and nt respectively, and if there exist transformations in all 
Jp and in R^, taking S into T, then there exists a rational integer q, 
prime to any given rational integer r, such that there is a transformation 
in J taking S into q2T. 

Let r be given. Then, according to the theorem, S may be taken 
into T by a transformation, J3, in J?, the denominators of the ele­
ments of which are relatively prime to r. If we denote the least com­
mon multiple of the denominators of the elements of B by q, then 
(g, r) = l , a n d 

B'SB = 2\ qB'SqB = q2T. 

Surely qB is in / . 
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