
GRATINGS AND HOMOLOGY THEORY 

J. W. ALEXANDER 

1. Introduction. The relation of an abelian group to its character 
group is merely one example of a relation between an algebraic sys­
tem T and a topological system X, each invariantively associated 
with the other. Of the two systems T and X, the first can be de­
scribed in pseudo-combinatory terms, while the second involves the 
use of more sophisticated notions, such as passage to the limit, 
geometrical continuity, and so on. Accordingly, problems which are 
ordinarily expressed in terms of the system X can often be treated 
more simply by restating them in terms of the system T. 

In this paper we shall be dealing with a class of algebraic systems 
r , called gratings. The theory of gratings will aim, among other 
things, to describe the topological properties of a space X in terms of 
the ways in which the space can be expressed as the union of two 
subspaces A and C, A\JC = X. The theory will be pseudo-combina­
tory in character, in the sense that it will have to do with combina­
tory operations applied to an unlimited number of abstract elements, 
or symbols. I t will acquire a geometrical significance only when the 
symbols are attached to appropriate geometrical entities. The theory 
will be applicable both to ordinary topological spaces and to spaces 
of a more general type, such as the ones determined by distributive 
lattices, which last need not be assumed to possess atomic elements. 
With the aid of gratings, we shall be able to reformulate a variety of 
problems in topology, differential geometry, potential theory, and so 
on, in pseudo-combinatory terms. 

The present paper will be devoted almost exclusively to the ele­
mentary formal theory of gratings. Further developments, along with 
a number of typical applications, will be considered subsequently.1 

2. Cuts, elements, gratings, cells. A cut will be any ordered triad 
7 = (a, ô, c) consisting of three different abstract elements a, b> and c. 
The element a will be called the negative face, the element b the edge, 
the element c the positive face of the cut. 

A grating T= [y] will be any (finite or infinite) set of cuts, such 
that no two of the cuts have an element in common. The cuts y will be 

Received by the editors October 25, 1946; published with the invited addresses 
for reasons of space and editorial convenience, 

1 The terminology adopted in this paper differs quite radically from that used 
by the author in an earlier paper on gratings: A theory of connectivity in terms of 
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called the cuts of the grating, their elements will be called the ele­
ments of the grating. Given a cut ji = (ai, bi, d), it will be convenient 
to introduce a symbol %i to designate an unspecified element of 
7», Zi = ait biy or d. 

A cell A of a grating T will be any finite sequence of elements of T, 

(2.1) A = *i, «a, • • • , s« (s* = a*, #i, or d). 

The degree m(A) of the cell will be the number of terms of the se­
quence, the rank p(A) the number of terms in edges bi, rather than in 
faces ai or d. Thus we shall always have 0Sp(A) ^m(A). A cell of 
rank p will be called a p-cell. The rank of a cell will be indicated by a 
superscript, A = Ap. 

A cell will be called a type-cell if all its terms are negative faces, 
Zi = ai. The type of a cell 4̂ = Zi, 32, • • - , zm will be the type-cell 

(2.2) a{A) = ai, 0S, • • • , am 

of the same degree as A, such that the ith term of the sequence 
a(A) is the negative face a» belonging to the same cut as the ith term 
Zi of A, i = 1, 2, • • • , w. Two cells A and 5 will be said to be of the 
same type if their type-cells are identical. The number of cells of 
any given type a = a(A) will, of course, be finite (3W, to be exact). 
The type of a cell will be indicated by a subscript, A = Aa. Thus, a 
symbol of the form Ap

a will denote a p-cell of type a. A cell A will 
be said to be regular, or of regular type, if its type a = a(A) is composed 
of m different terms a*; it will be said to be singular, or of singular 
type, if its type a has any repeated terms. A cell A without repeated 
terms may, of course, be singular. For example, the cell A =at-, d is 
singular, since its type a(A)=ai, ai is singular. 

For the sake of greater formal simplicity, we shall assume that 
there is an empty sequence of elements with no terms at all. Accord­
ingly, we shall have a unique cell E€ of degree m = 0. The cell Ee will 
be called the unit cell. I t will be of rank p = 0 and of type e = E€. The 
type e will be called the unit type. The unit type will be regular. 

Every element z is paired with a cell z of degree m = 1 consisting 
of a single term in the element z. Our notation will make no distinc­
tion between the element z and the cell z. We shall call the cell z the 
elementary cell determined by the element z. The type a of an ele­
mentary cell z, z = a, b, or c, will also be said to be elementary. 

The product AB of a cell A =Zi, z2, • • - , zm and a cell B=Wi, w2, 
• • • , wn will be the cell 

(2.3) AB = Zi, Z2, • • • , Zm, Wi, W2y • • • , Wn 
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obtained by merely appending the sequence B to the sequence A. 
Thus, the product AB will be of degree rn+n, of rank p(A)+p(B), 
and of type a/3, where a is the type of A and (3 the type of B. Cell 
products will be associative, but noncommutative. The unit cell Ee will 
be the unit of cell multiplication, 

(2.4) E€A = A = AEt (A arbitrary). 

Generally speaking, it will be preferable to think of a cell A as a 
product of elementary cells, rather than as a sequence of elements. 
We shall therefore replace the sequential notation (2.1) by the prod­
uct notation 

( 2 . 5 ) A = Z1Z2 • • * zm. 

The cells A a of any fixed type a = axa2 • • • am can all be represented 
schematically in the space S n of n real variables £1, £2, • • • , £n> n^m> 
by making the following construction. Corresponding to each ele­
mentary factor zi of a cell ^4a = 2iZ2 * • • zm we write one of the three 
relations i ^ O , ^ = 0, £ ;^0 , the first if we have Z{ — # i , the second if 
we have Zi = bi, the third if we have z% = d. The m relations thus ob­
tained are regarded as the determining relations of the representation 
of Aa. The representation itself consists of all points £=£1, £2, • • • , £* 
of the space E" such that their first m coordinates satisfy the deter­
mining relations. In Fig. 1, we have represented the three cells a, b, 
and c of type a = aon the line S1; in Fig. 2, the same three cells in the 
plane S2. In Fig. 3, we have represented the nine cells Z1Z2 of type 
a = a\a<i in the plane S2. 

a\C\ 

aj)2 

#1#2 

bic2 

b\b2 

b%a2 

C\C2 

Cib2 

C\a2 

FIG. 1 FIG. 2 FIG. 3 

The representation of a p-cell ^4p in the w-space S n is evidently a 
point set of dimensionality n— p, since the determining relations of 
the representation consist of p independent equations and w—p in­
equalities. The representation of the unit cell Ee in the space S n is 
the entire space Sn , since the representation of E€ has no determining 
relations at all. 
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Given two different cells A = Z\Z% • • • zm and B = W1W2 • • • wm of 
the same type a, we shall say that the cell A is on the boundary of the 
cell B if, for every i, the factor Wi of B is equal either to the cor­
responding factor Zi of A or to the edge bi associated with the factor 
Zi, 

(2.6) AbdB *-* A ?* B, zi = w* or bif (i = 1, 2, - • • , w). 

Clearly, the cell A will be on the boundary of the cell B if, and only 
if, the representation of the cell A in the space S n is made up entirely 
of points on the geometrical boundary of the representation of the 
cell B in Sw. 

3. Chains. Now, let T be a grating, let [Aa] be the set of all cells 
of T of some fixed type ce, and let [X] be an arbitrary ring of coeffi­
cients without divisors of zero. (In most problems, the ring [X] will 
either be the ring of all the integers or the ring of all the real num­
bers.) By a chain K of the grating T we shall mean any mapping of 
the set [Aa] into the ring [X]. The chain K will be said to be of type 
ce, where ce is the type of the cells Aa. I t will be said to be regular 
or singular according as its type is regular or singular. We shall write 
K = Ka when we want to indicate explicitly that the chain K is of 
type Ka. 

In accordance with one of the standard notational procedures, we 
shall represent a chain Ka by a linear form in the cells of type ce, 

(3.1) Ka= E i M « i . 

For every i, the coefficient of the ith term of the form will be the 
image X* of the cell Aa% in the mapping Ka. As suggested by the nota­
tion, the sum and difference of a chain Ka= ^2i^iAai and a chain 
La= ^xiiiAai will be the chains Ka+La= ]C»(X»+M<M«* and Ka—La 

= ^i(Ki—iJLi)Aai respectively. Moreover, a linear combination of a 
finite set of chains Kaj= ^2ihijAai,j = l, 2, • • • , n> will be any chain 
of the form ]Ci/*i^«i=]C*7MiX*7i4a», where the coefficients IXJ and X»,-
belong to the ring [X]. Of course, sums, differences, and linear com­
binations will not be defined unless all the chains involved are of the 
same type ce. 

The cells of a chain Ka will be the cells Aa% such that their co­
efficients X» in the linear form (3.1) are different from 0. To each 
type a there will correspond a chain 0a with no cells at all, such 
that the coefficients of all the cells Aa% are 0. The chain 0« will be 
called the zero of type ce. I t will, of course, be a different entity from 
the zero Op of type j8, jS^ce. 

To simplify the exposition, we shall assume in the sequel that the 
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ring [X] has a unit element. (The assumption can easily be dispensed 
with by introducing symbolic chains, in the manner outlined in Re­
mark 3, below.) If there is a unit element X = 1, every cell Aa of type 
a will determine a chain 1 -Aa of type ce, such that the coefficient of 
the cell Aai—A a in (3.1) is 1 and that the coefficients of all the other 
cells Aai are 0. We shall adopt the standard abbreviation Aa = l'Aa, 
and shall say that the chain Aa is the cell-chain determined by the 
cell A«. Here again, our notation will make no distinction between the 
cell A a and the cell-chain Aa> The cell-chain z determined by an ele­
mentary cell z will be called an elementary chain] the cell-chain E€ 

determined by the unit cell E€ will be called the unit chain. According 
to (3.1), every chain Ka will be a uniquely determined linear com­
bination of cell-chains Aai. 

Given two chains Ka^^ikiAai and Lp=^jfijBpjof arbitrary types 
a and |3 respectively, we shall say that their product is the chain of 
type ce/3 determined by the linear form 

(3.2) KaU = Z X<Mi (AaiPfii). 
ij 

(The symbol A aiBpj in the right-hand member of (3.2) represents the 
cell product of the cells Aa% and Bpj.) Chain multiplication will be 
associative, and two-way distributive with respect to chain addition. 
However, it will be noncommutative, since cell multiplication is non-
commutative. Clearly, the unit chain E€ will be the unit of chain 
multiplication, 

(3.3) EeKa = Ka = KaE€. 

Moreover, we shall have 

(3.4) OaKfi = 0afi = La0fi. 

A chain Ka will be assigned a definite degree m, equal to the de­
gree of its type ce. In general, the chain will not be assigned a rank p. 
However, we shall say that a chain Ka is a p-chain1 or that Ka is of 
rank p, if no cell of Ka is of any other rank than p. According to this 
definition, a zero 0a will be of all ranks p simultaneously, p = 0, 1, 
2, • • • , while a cell-chain A a will be of the same rank as its determin­
ing cell A a» By collecting terms of like rank in (3.1), we shall be able 
to express a chain Ka in a uniquely determined manner as a sum of 
the form 

(3.5) Ka = Kl + Kl + • • • + Ka («I = »(£«) ) , 

where Kp
a, p = 0, 1, 2, • • • , tn, is a p-chain. We shall extend the mean-
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ing of the symbol Kp
a to higher determinations of the rank p by writing 

Kp
t = 0a, for p > m . The chain Kp

a will be called the pth constituent of 
the chain Ka. We shall treat the superscript p as the symbol for an 
operator—the rank operator p—transforming a chain Ka into the pth 
constituent Kp

a of Ka. The operator p will, of course, be linear, 

(3.6) (j^\iKaX = EM&. 

and we shall have 

(3 7) {RP<x)P = * " ' 
(Ka)' = 0a (cr ^ p). 

Obviously, the product KpL° of a p-chain and a cr-chain will be a 
(p+cr) -chain. 

To avoid confusion, we shall never use the symbol Xp, as applied 
to a cell or chain, to denote the p-fold product XX • • • X. The sym­
bol will merely indicate that the cell or chain to which it refers is of 
rank p. One further matter of notation: Instead of expressing a chain 
Ka as a linear form (3.1) in the cells Aa we can express it as a form 
of degree m in the elementary cells z by treating each cell i a a s a 
product of m elementary factors; cf. (2.5). The order of the factors 
in the terms of the form must, of course, be taken into consideration. 

Remark 1. We shall use the standard notation 7 G T to indicate 
that a cut 7 is a member of grating T. Moreover, by extending the 
meaning of the symbol £ , we shall write s E T , AÇ.Y, K E T to indi­
cate that z is an element, A a cell, and K a chain of I \ 

Remark 2. As a heuristic device, we can construct a schematic 
model of a chain Ka by representing the cells Aa% of type a in a space 
Sn , after the manner of §2, and by "weighting" or "labelling" the 
representation of each cell Aa% with the coefficient of Aai in the ex­
pression (3.1). 

Remark 3. The discussion can obviously be extended to the case in 
which the ring [X] has no unit elements by immersing the ring [X] 
in an appropriate ring [JJL] with a unit element. For instance, to state 
matters rather loosely, we can let [/x] be the set of all linear expres­
sions /x=X+w such that X is a member of the ring [X] and n an in­
teger. The set [/x] becomes a ring when we combine the expressions /x 
by addition and multiplication in the manner suggested by the nota­
tion /x =\+n. Each element X of [X] can be identified with the element 
/x=X+0 of [/x]. The element jx = 0 + l is the unit element of [/*]. A 
chain Ka is written in the form Ka=£iiAiAai, M*€:[M]- However, it 
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is treated as purely symbolic unless all its coefficients pi are identified 
with members of [X], and so on. 

4. The conjugation and boundary operators. As a formal device for 
taking care of signs, we shall now define a type-preserving operator, 
called the conjugation operator, acting on the chains of a grating I \ 
The conjugation operator will transform the chain Ka represented in 
(3.5) into the chain 

(4.1) Kl = Kl - Kl + • • • + ( - l)mKl 

formed by merely changing the sign of all constituents of odd ranks. 
The chain Ka* will be called the conjugate of the chain Ka. The con­
jugation operator will evidently be linear, 

(4.2) (X>,2£«<) = S x A 

and we shall have 

(4.3) KT = Kai (KaLp)* = KIL*, ( i O * = (Kly. 

Next, we shall define a more significant type-preserving operator, 
called the boundary operator. The boundary operator will transform a 
chain Ka into a chain KJ, called the boundary of Ka. We shall re­
quire that the boundary operator be linear, 

(4.4) ( E ^ « < ) = I X ^ i i . 

I t will therefore be sufficient for us to define the boundaries of the 
cell-chains. The boundary of a cell-chain Aa will be defined by induc­
tion on the degree m = m(Aa) of Aa> As the hypothesis of the induc­
tion—which will begin with the value m — 2—we shall assume that 
we know the boundaries of all chains of degree m — 1. 

Case m = 0. The only cell-chain of degree 0 is the unit chain E*. We 
shall write 

(4.5) E[ « 0.. 

Case m = l. The cell-chains of degree 1 are the elementary chains, 
which are of the forms z = a, &, or c. We shall write 

(4.6) a' = ô, V = 0a, c' = - b. 

The zero 0a will, of course, be the zero of the same type a as the 
chains a, fe, and c. 
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Case m>l. A cell-chain A of degree m, m>\1 can be written in a 
uniquely determined manner as the product Bz of a cell-chain B of 
degree m — 1 and an elementary chain 0. We shall define the boundary 
of A by the recursion formula 

(4.7) A' = £ ' s + £ V . 

The boundary of a general chain K of degree w will then be fully de­
termined, by linearity. 

We can easily verify, by induction, that the boundary of a chain is 
of the same type a as the chain itself, and that the boundary of a 
p-chain is a (p + l)-chain. Therefore, by (3.5), we can write 

(4.8) (K'a)° « 0a, (Kf
a)

P = ( i C Y (P > 0). 

I t is also clear, by (4.1) and (4.8), that the boundary operator anti-
commutes with the conjugation operator, 

(4.9) (K*)' = - (K')*. 

The formula for the boundary of a chain product KL is 

(4.10) (KLY = K'L + K*L'. 

PROOF. Since the boundary and conjugation operators are both 
linear, and since chain multiplication is distributive with respect to 
chain addition, the proof reduces, at once, to the case in which the 
factors K and L are both cell-chains. We shall therefore assume that 
K and L are cell-chains, and shall proceed by induction on the degree 
m of the second factor L. 

The case m(L) = 0 is trivial. The cell-chain L can only be the unit 
chain L = £ £ . Therefore, we have Z/ = 0€, and both members of (4.10) 
reduce to K'. 

The case m(L) = l is covered by the assumed recursion formula 
(4.7). 

We treat the case m(L) > 1 by expressing the cell-chain L as a prod­
uct L=AB, where A and B are cell-chains of degrees less than m(L). 
By the hypothesis of the induction, we have at once 

(KL)' = (KA-B)' = {KA)'B + {KA)*B' 

= K'AB + K*A'B + K*A*B' 

= K'AB + K*{AB)' 

= K'L + K*L', 

which is what we set out to prove. 
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The explicit formula for the boundary of a product KiK2 • • • Kn 

of n factors Ki is 

(4.11) (K\K2 • • • Kny = 2LiKiK.2 • • • Ki-iKi Ki+i • • • Km 
i 

as may be proved directly by induction on n. As a special case of 
(4.11) we have the formula for the boundary of a cell-chain A = Z\Z2 

(4.12) A' = (zxz2 • • • zm)f = X) *i*2 • • • Zi-iZi'zi+i • • • * « . 
i 

This last formula has a simple geometrical interpretation. The ith 
term on the right vanishes if we have Zi = bi (whence, Zi = 0) and is 
of one of the two forms ±ZiZ2 • • • Zi-ibiZi+i • • • zm if we have Zi = di 
or c». Therefore, the cells of the boundary of a p-cell -4 are precisely 
the (p + l)-cells B on the boundary of A, in the sense of §2. 

The boundary of the boundary of a chain K is the zero of the same 
type a as K, 

(4.13) K" = 0 (that is, Kf = 0«). 

PROOF. Again, the proof reduces, by linearity, to the case in which 
the chain K is a cell-chain. We therefore assume that K is a cell-chain, 
and proceed by induction on the degree m of K. 

The case w = 0 and m = l are both trivial, since we have Ei' =0€ , 
by (4.5), and a " = &" = c" = 0«, by (4.6). 

We treat the case m > 0 by expressing the cell-chain K as a product 
K—ABy where A and B are cell-chains of degrees less than m. Accord­
ing to (4.10), we have 

K' = (AB)' = A'B + A*B', K" = A"B + A*'B' + A*'B' + A**B'. 

The two outer terms on the right are zeros, by the hypothesis of the 
induction; the two inner terms cancel, by (4.9). 

5. Refinors, refinements, pseudo-sums. The sum of all the cell-
chains of type a and rank 0 will be called the refinor Ea of type a. 
The refinor of unit type € will thus be the unit chain E€, since the only 
cell of unit type is the cell Ee. The refinor of type a = aia2 • • • am> 
m>0, will be the product 

(5.1) Ea = (#i + ci)(a2 + c2) • • • (am + cm). 

Indeed, if we expand the product on the right we clearly obtain the 
sum of all cell-chains of the form Aa = Z\Z2 • • • zm, such that each fac­
tor Zi has one of the two determinations a* or d. According to (5.1), 
the product of two refinors is a refinor, 
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(5.2) EaEfi = Eafi. 

Moreover, we have 

Ea; £a = 0« ( P > 0 ) ; 

Ea\ Ea = 0a. 

Formulae (5.3) are obvious, with the possible exception of the last 
one. To prove that the boundary of Ea vanishes, we have only to 
note that the boundary of each factor (di+d) vanishes, (di+d)' 
= bi — bi = 0ai, and to apply (4.11) for the boundary of a product. 

A refinement of a chain K will be any product of the form KE, 
where £ is a refinor. In view of the identity K = KEe, a chain K is 
to be regarded as a refinement of itself. The geometrical meaning of a 
refinement is as follows. Suppose we construct schematic models of 
the chains Ka and KaEp in the same n-space Sn , n^m(a) +w(j3), after 
the manner of §3. Then each p-cell APJB% of the refinement KaEp will 
be represented by a portion of the geometrical domain representing 
the corresponding p-cell Ap

a of Ka. For heuristic purposes, we can 
think of the chain KaEp as the one obtained by "subdividing each 
p-cell Ap

a of Ka into the subcells Ap
aB^.n Thus, in particular, an ele­

mentary refinement K{a-\-c) of a chain K will be obtained by "cutting 
each cell A of K along the edge ô, thereby separating the cell A into 
a pair of subcells A a and Ac which touch along the edge b.n 

We can think of a refinor E as an operator transforming a chain K 
into the refinement KE of K. The operator is linear, 

(5.4) f" E X,X<1 E =X UKiE), 

since chain multiplication is distributive with respect to chain addi­
tion. Moreover, by (5.3), the operator E commutes with the rank, 
conjugation, and boundary operators, 

(5.5) (KEY = KŒ, (KE)* = K*Ey (KEY = K'E. 

Of course, we can also write 

(5.6) (EKy = EK', (EK)* = EK*, (EK)' = EK'. 

The sum of two chains is not defined unless the chains are of the 
same type. To compensate for this defect it will be convenient 
(though not strictly essential) to introduce a new law of combination 

(5.3) 
El 

El 

(5.7) Ka @ L$ = KaEp + EaLp, 
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which will be applicable to any pair of chains if « and L$. The chain 
Ka®Lp will be called the pseudo-sum of Ka and L&. I t will be of the 
same type a(3 as the product KaLp. Similarly, we shall write 

(5.8) Ka&Lfi=Ka® ( - Lfi) = KaEfi ~ EaLfi, 

and shall call the chain Ka-QLp the pseudo-difference of Ka and L#. 
A chain of the form 

\xKi e x2if2 e . •. e \nKn 

^ z2 X»Ei£2 • • • Ei-iKiEi+i • • • En 
i 

will be called a pseudo-combination of the chains if;. 
Pseudo-addition will be associative, 

Ka e (£* e My) = (£« e z,) e My 

( = KaEp Ey -\- EcJLpEy -\- EaEpMy), 

but noncommutative. In general, the pseudo-difference Ka^Ka will 
not be zero. According to (5.4), (5.5), and (5.6), the rank, conjuga­
tion, and boundary operators will be "pseudo-linear" with respect to 
pseudo-addition : 

(K ® Ly = j£> e L', (K e z,)* = if* e z,*, 
(if e x)' - if' e x'. 

The following identities are worth keeping in mind : 

(5.12) i f j ^ = if« 0 0* EaKp = 0a 0 if/sî 

also the identity 

(if « + £«) e (Mfi + Nfi) = (if « e Mfi) + (La e N?) 

[= (if a + La)Efi + EaiMp + # , ) ] . 

This last is analogous to a distributive law. 

6. Permutators and permutations. Let 

(6.1) TT = (ii, i2, • • • , in) 

be the permutation on the integers 1, 2, • • • , n which transforms the 
integer 5 into the integer i8 (5 = 1, 2, • • • , n). Corresponding to the 
permutation TT we shall define a linear operator, or permutor—also to 
be denoted by 7r—which will transform every chain if of degree m, 
m^n, into a chain 7rif, called the permutation TTK of if. Since the 
operator TT is to be linear, 
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(6.2) TT l E X<£«<) = E X*(TiC«0 (m(a) â »), 

it will be sufficient for us to define the permutations w(A) of the cell-
chains A of degrees m greater than or equal to n. If A is the cell-chain 
A =ZiZ2 • - - zm,m^n,we shall write 

(6.3) IT A = ( - I J ' O B ^ • ' • Zin)(Zn+lZn+2 ' ' ' *m), 

where the integer a which determines the sign of the expression is to 
be calculated in the following manner. We examine the product 
Z1Z2 ' ' ' Zm and construct all pairs (zi, z}) consisting of two different 
factors Zi = bi and Zj = bj of rank 1. (Factors Zi — di or a of rank 0 are 
simply ignored.) The integer a is equal to the number of pairs (zu z3) 
such that the relative order of Zi and Zj in the product Z1Z2 • • • zm is 
different from the relative order of Zi and zj in the product 
ZixZi2 - - - zinzn+1 - - • zm. A few examples will make our meaning clear: 

(i) Let A = ai6263be a cell-chain, and let7r = (2 ,1 , 3) and K=(3, 2, 1) 
be permutations on the integers 1, 2, 3. We write A = 62ai&3, with the 
plus sign, since we have not disturbed the relative order of the factors 
62 and &3, but we write KA = —636201, with the minus sign, since we 
have reversed the order of the factors 62 and 63. 

(ii) Let -4=66 be a singular cell of singular type aa, and let 
7T = (2, 1) be the permutation which inverts the integers 1 and 2. We 
write irA = — 66, with the minus sign, since we have reversed the order 
of the two factors 6. (N.B. A term of a sequence, or a factor of a non-
commutative product, is not fully determined unless we know both 
its value and its position. When we speak, rather loosely, about identi­
cal terms or factors, we are referring, of course, to terms or factors 
with identical values.) 

(iii) Let C be the product of a p-cell Ap = ZiZ2 - • • zm and a <r-cell 
B* = zm+iZm+2 - - - zn, and let K be the cyclic permutation (m + 1, 
m + 2 , • • • , nf 1, 2, • • • , m). Then we must obviously write 

(6.4) K{A*B') = ( - lY'B'A', 

since each of the p factors Zi = bi of Ap has undergone an inversion 
relative to each of the a factors Zj = bj of B°. By linearity, a similar 
formula applies to the cyclic permutation K of the product Kp

aL^ of a 
p-chain Kp

a and a <7-chain L£, 

(6.5) K(KP
aL°e) = ( - l^LpKa (*-aj8 = &a). 

No such simple formula exists for the permutation TT(KL) of two gen­
eral chains K and L. However, if either of the chains K or L is a 
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0-chain we can, of course, write 

(6.6) K(KL) =LK (K = K° or L = L°), 

without any change of sign. In consequence of (6.6), it is clear that 
the pesudo-sum Lp@Ka~LpEa-\-EpKa is a cyclic permutation of the 
pseudo-sum Ka@Lp = KaEp-{-EaLp, 

(6.7) Lp@ Ka = K(K* 0 Lp) (K'cxp = /fo). 

A permutor (6.1,) obviously transforms a chain Ka of type a 
= axa2 - - - ami m>n1 into a chain Kra of type 

(6.8) 0 = 7r(a) = (ahai2 • • • ö in)(an+ian+2 • • • am). 

We shall call the type /3 the permutation ir(a) of the type a. 
Remark. I t would be natural to define the permutation of a general 

cell A=ZiZ2 - - • zm by the formula ir(A) = (zilZi2 • • • Zin)(zn+izn+2 
• - • zm). However, we prefer to define only the permutations of the 

type-cells ce. I t would be confusing to have one formula for a permuta­
tion of the cell A and a different formula, involving at times a differ­
ent sign, for a permutation of the corresponding cell-chain A. Formula 
(6.S) leads to no confusion, whether we interpret the product 
#i#2 • • • am as the symbol for a type-cell or as the symbol for a cell-
chain. 

We can, of course, write the identity 

(6.9) (vKJLft = *{K*LÜ, 

provided the degree of Ka is such that the chain wKa is defined. Simi­
larly, we can write 

(6.10) Ka(fcLfi) = u(KJLp) (w • cfi = a • TT/3) , 

provided the permutation wLp is defined. The permutor TV obviously 
commutes with the rank and conjugation operators, so that we are 
justified in using the simplified notations 

(6.11) TK<> = T(K') = (TTZ)», TTX* = TT(K*) = (*•£)*. 

The permutor T also commutes with the boundary operator, 

(6.12) vK' = TT(K') = (TTK)', 

though, in this case, a formal proof is necessary because of minor 
difficulties in regard to signs. Since we are dealing with linear opera­
tors, the proof of (6.12) reduces to the case in which K is a cell-
chain, K = ZiZ2 • • • zm. Moreover, every permutation on the integers 
1,2, •• • , m is the resultant of inversions which interchange consecu-
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tive integers i and i + l. Therefore, the proof reduces, in the last 
analysis, to the case in which K is a cell-chain of the form K=AzwB, 
and in which IT is the permutor which interchanges the adjacent ele­
mentary factors z and w. Now, in the case left for consideration, we 
have 

TK = (— i)i»AwzB, 

where p and a are the ranks of the elementary factors z and w respec­
tively (p = 0 or 1, (r = 0 or 1). Therefore we can write 

(TK)' = ( - l)"[ii 'w*B + A*v/zB + A*w*z'B + A*tf#B']. 

On the other hand, we can also write 

K' = A'zwB + A*z'wB + A*z*w'B + A*z*w*B', 
whence 

„•(£') = (~iyp[A'wzB + (-iyA*wz'B + (~iyA*w'z*B + A*w*z*B'), 

since z' and w' are of ranks p + 1 and <r+l respectively. To conclude 
the proof, we have only to note that the expression for TT(K') is 
equivalent to the expression for (irK)'', since we have 2* = ( — l)pz and 
w* = ( — iyw. 

7. Grating representations; loci. A representation (T, ƒ, X) of a 
grating T = [7] on a point set X = [x] will consist of the grating T, 
the set X, and an arbitrary function ƒ(7, x) of a variable cut of T 
and a variable point of X, such that the only allowable values of the 
function are — 1, 0, and 1. The set X will be called the carrier, and 
the function f(y, x) the determining function of the representation. If 
we have a representation (T, ƒ, X) of T on X, every cut 7; = (a*, &t, Ci) 
of the grating T will determine a separation of the carrier X into a 
trio of disjoint sets Ai, Bi, and d, consisting of the points x a t which 
the determining function ƒ(7^ x) takes on the values — 1 , 0, and 1 
respectively. We shall call the sets Ai, Bi, and d the representatives 
of the elements a^ hi, and d respectively. 

Example A. Let X be a topological space, and let [7] be the set of 
all real, continuous functions y(x) of a variable point x of X. We treat 
each member 7 ; of [7] as the symbol for a cut consisting of three 
abstract elements a», hi, and d. The cuts 7» form a grating T = [7]. 
Moreover, we obtain a representation (T, ƒ, X) of the grating T on 
the carrier X by letting the determining function ƒ(7, #) be the func­
tion which takes on the value — 1 , 0, or 1 according as the function 
y{x) is negative, zero, or positive at x. The representatives of the ele­
ments ai, hi, and Ci of 7; are, of course, the point sets determined by 
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the relations 7*<0, 7i = 0, and 7*>0 respectively. Other significant 
representations will be given in §13. 

Given a representation ( I \ ƒ, X) of a grating T on a set X, there is 
a natural way of assigning to each chain K of Y an appropriate sub­
set I JKT| of X. The subset \K\ will be called the locus of the chain K. 
I t will be defined in the following manner: 

To the unit chain Eei we shall assign the entire set X, 

(7.1) \Et\ = X. 

To the elementary chains Zi — di, bi, and d, we shall assign the sets 

(7.2) I <n \ = Ai\j Bit \bi[= Bit \ a \ = d \J Bi 

respectively, where Ai, Bi, and d are the representatives of the ele­
ments ai, bi, and Ci respectively. Thus, in Example A above, the loci 
I o» I, I bi I, and | Ci | will be the sets determined by the conditions 
7» è 0, 7* = 0, and 7* è 0 respectively. According to (7.2), we shall have 

(7.3) | a * | U | * | = X, | a , | n | * | = |&<| . 

The locus of a cell-chain A = Z\Zi • • • zm of degree m greater than 1 
will be defined to be the intersection of the loci of the elementary fac­
tors of A, 

(7.4) \ A \ = | » 1 | n | « , | n . . - n l » m | . 

The formula for the product of two cell-chains A and B will thus be 

(7.5) \AB\ = | i l | n | £ | . 

Moreover, we shall have 

(7.6) AbdB-+\A\ Q\B\. 

Indeed, if the cell A—Z\Z<L • • • zm is on the boundary of the cell 
B=WxW2 - • • wm, we can write Zi = Wi or bi, by (2.6); whence \zi\ 
Q\wi\, by (7.3); whence, finally, \A\ =n<|*<| Cn<|w<| = | J3 | , by 
(7.4). The locus of a multiple X̂ 4 of a cell-chain A will be said to be 
identical with the locus of A, provided the coefficient X does not van­
ish. If the coefficient vanishes, the locus will be said to be the empty 
set, 

(7.7) | X 4 | = | i l | ( X ^ O ) ; J 0 - ^ 1 = 0 . 

The following identities will be useful in the sequel: 

(7.8) \ac\ = \ab\ = \bc\ = | bb\ = | j | . 

They are immediate consequences of (7.2) and (7.4). 
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To complete the definition of the locus, we shall say that the locus 
of a general chain K—^ikiAi is the union of the loci of the terms 
of K, 

(7.9) | K | = | \XAx | U | X2^21 U • • • U | \nAn \. 

We can evidently write the identities 

(7.10) 1^1 = 1 ^ 1 = 1 ^ 1 , 
since corresponding terms of K, i£*, and wK can differ, at most, in 
sign and in the arrangement of the elementary factors Zi within the 
terms. We can also write 

(7.H) |XZ + M L | C | Z | U | Z | , 

since every non vanishing term of \K-\~txL corresponds to a similar 
non vanishing term of one, at least, of the chains K and L. Again, we 
can write 

(7.12) \KL\=\K\n\L\, 

since the nonvanishing terms of KL are the products of the non-
vanishing terms of K and the nonvanishing terms of L. The locus 
of a zero is, of course, empty. 

Remark. In proving the equality (7.12), we make use, for the first 
time, of the assumption that the ring of coefficients [X] has no zero 
divisors. If the ring were allowed to have zero divisors, the product 
of a nonvanishing term of K and a nonvanishing term of L might be 
a vanishing term of KL, so that the equality (7.12) would have to be 
replaced by the inequality \KL\ C | K\ C\\L\ . 

According to (7.3) and (7.9), the locus of an elementary refinor 
di+Ci is |a<+c»| =X. Therefore, by (7.12), we can write 

(7.13) \E\=X, \KE\ =\EK\ = | * l . 

where E is an arbitrary refinor and K an arbitrary chain. As a corol­
lary to (7.11) and (7.13), we have 

(7.14) | X i f e M L | c | j S : | u | L | . 

Finally, by (7.6) and (7.9), 

(7.15) \K' | C | £ | , 

since every cell of K' is on the boundary of some cell of K. 
In the applications to topology, the carrier of a grating T will ordi­

narily be a topological space. A representation of a grating T on a 
topological space X will be said to be continuous provided the repre-

file:///K-/~txL
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sentatives A i and d of all the faces of T ave open sets. If the represen­
tation is continuous, the representatives Bi of the edges must be 
closed sets, since the sets Bi are the complements of the open sets 
AJUCi. The loci of the chains K of V are also closed sets, as may be 
verified immediately by considering successively the loci (7.1), (7.2), 
(7.4), and (7.9). The representation (T, ƒ, X) in Example A above is 
evidently continuous. 

Remark. A representation (T, ƒ, X) of a grating T on a point set X 
induces a topology on the set X. When we speak of the natural to­
pology induced by ( I \ ƒ, X) on X we shall mean the coarsest topology 
such that the representatives of all the faces of Y are open sets—that 
is, the coarsest topology such that the representation of F on I 
is continuous. With reference to the natural topology induced on X, 
we can construct a basic set of neighborhoods consisting of all sets of 
the form Z^CsZiJ^ • * • C\Z%n (n finite, but not fixed), such that the 
Zi's are the representatives of faces of T, Zi=Ai or d. In other words, 
we can construct a sub-basic set of neighborhoods consisting of the 
representatives Zi of all the faces of T. 

8. The intrinsic representation of a grating. An intrinsic point y of 
a grating T will be any single-valued function y = y(y) of the cuts of I \ 
such that the only allowable values of the function are —1,0, and 1. 
The set Y= [y] of all intrinsic points of V will be called the intrinsic 
carrier of the grating. The intrinsic representation of the grating will 
be the representation (T, h, Y) of T on Y determined by a function 
(̂Y> y)t such that the value of the function, for every fixed determina­

tion of 7 and y, is equal to the value of the function y (7) for the given 
determination of 7, h(y, y) =3^(7). The representative of an element z 
of T in relation to the intrinsic representation (T, h, Y) will be called 
the intrinsic representative of 2, the locus of a chain K will be called the 
intrinsic locus of K. Clearly, the intrinsic representatives of the ele­
ments Zi = ai, bu and d will be the sets made up of all functions (in­
trinsic points) y(7) such that we have y{y%) = — 1 , 0, and 1 respec­
tively. The intrinsic locus of a chain K will be denoted by a special 
symbol 11 K\ |. 

The intrinsic representation of a grating is of some theoretical in­
terest, in that it enables us to describe the properties of the grating 
in pseudo-combinatory language, without reference to limits and con­
tinuity. However, it can ordinarily be dispensed with in problems 
involving a prescribed representation of the grating on a point set X. 
When we want to talk about the intrinsic representation in topologi­
cal terms, we shall assign the natural topology to the intrinsic carrier 
Y (cf. §7). Thus, the intrinsic representation will be continuous. 
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The chains K of a grating V will be partially ordered in terms of 
their intrinsic loci, as follows. If the intrinsic locus ||i£|| of a chain K 
is contained in the intrinsic locus | |L | | of a chain L, ||i£|| C | | L | | , we 
shall say that K is dominated by L and that L dominates K. The rela­
tions of dominating and of being dominated are evidently transitive, 
since the relation of inclusion is transitive. However, each of two 
different chains may dominate the other (cf., for example, the chains 
ac, ab, and so on, in (7.8)), so that the relations are not anti-sym­
metrical. 

Remark The question of whether or not a prescribed chain K is 
dominated by a prescribed chain L can always be answered effec­
tively, by a finite process. Consider, first, the case in which the chains 
are cell-chains, K = A, L = B. The locus ||^4|| consists of all intrinsic 
points y(7), such that the functions 3/(7) satisfy a finite set of rela­
tions, each of one of the forms y(yi)S0, y(7*)=0, or 37(7*) ^ 0 . A 

Therefore, by comparing the 
| s | | , we can determine, by in-

similar remark applies to the locus || J3|| 
two sets of relations, for ||.4|| and for 
spection, whether or not there exists an intrinsic point belonging to 
the locus m | | , but not to the locus ||j3||. Consider, next, the general 
case. The chain K has only a finite number of cells A, the chain L a 
finite number of cells B. Therefore, since we know how to handle the 
special case, we can always determine effectively whether or not there 
exists an intrinsic point belonging to some ||-4||, but not to any | | s | | . 
In other words, we can determine effectively whether or not we have 

MINIMI-
[8.1] THEOREM. A representation ( I \ ƒ, X) of a grating Y= [7] on 

a space X induces a mapping y = ix(x) [ = / ( 7 , x)] of the space X into 
the intrinsic carrier Y of I \ Moreover, the mapping of X into Y is con­
tinuous if the representation (T, ƒ, X) is continuous. 

PROOF. The first part of the theorem is obvious if the notation is 
clearly understood. For a fixed determination % of x, the determin­
ing function/(7, x) of the representation ( I \ ƒ, X) becomes a function 
y=f(y, x) of 7 alone, with values limited to — 1, 0, and 1. Thus, the 
function y is an intrinsic point of T, by the very definition of the in­
trinsic points. By the transformation y=n(x)1 we mean the one which 
carries the point x into the point y. To verify that the transformation 
is continuous when ( I \ ƒ, X) is continuous, we let Zi be an element of 
T, Zx the representation of Zi in X, and ZY the representation of Zi 
in F. The set ZY consists of all intrinsic points 3̂  = 3 (̂7) such that we 
have y(y%) =k (k= — 1, 0, or 1 according as we have Zi — ai, &», or a). 
The set Zx consists of all points x of X such that we have ƒ (7», x) = k. 
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In other words, the set Zx consists of all points of X which are carried 
into points of ZY by the transformation y=fx(x) [ = / ( Y , X)]. The con­
tinuity of the transformation is now obvious. Indeed, the intrinsic 
representations ZY of the faces Zi of T constitute a sub-basic set of 
neighborhoods of Y (cf. §7); the inverse images ZX—^~1(ZY) of the 
Zr 's are open, since the representation (T, ƒ, X) is continuous; there­
fore, by a well known criterion for continuity, the transformation 
y=^(x) is continuous. 

[8.2] COROLLARY. Let (T, ƒ, X) be a representation of a grating Y 
on a point set X, and let K and L be chains of I \ Then if the chain K 
is dominated by the chain L the locus of K is contained in the locus of L, 

(8.1) MlE|W|->|£ |£ |L| . 
PROOF. In the notation of the theorem, we have | JE6 | =/x""1||£e||, 

by (7.1), \z\ =MiMI> by (7.2), \A\ =M" iW| , by (7.4), and finally 
\K\ =jLt~1||x||, by (7.9). Thus, every point x of \K\ is mapped into a 
point y~ix(x) of ||i£||. Now suppose we have ||2£||c||Z,||. Then the 
image y of x must also be a point of | |L||. Therefore, the point x must 
be a point of | L\. In other words, we must have \K\ C | L \ . 

9. Grating ideals. Cycles and bounding cycles. An ideal $ of a 
grating V will be any set of chains of V with the following three prop­
erties : 

(i) The zero 0€ of unit type e is a member of the set. 
(ii) The sum Ka+La of two members of the set of like type a is 

a member of the set. 
(iii) Every chain K dominated by a member of the set is a member 

of the set. 

[9.1] THEOREM. Let $ be an ideal of a grating T. Then: 
(a) All the zeros 0a of V are members of <£. 
(j8) If K is a member of <ï>, so also are Xi£, E>, X*, TTK, KE, and Kf. 

Moreover, the cell-chains A determined by the cells of K are members 
of$. 

(7) If K is a member of <£> and L an arbitrary chain of T, the chains 
KL and LK are members of <$. 

(S) Every linear combination of members of $ is a member of $ ; 
every pseudo-combination of members of Q is a member of <&. 

The proof is trivial. Statement (a) follows from (i) and (iii), since 
||0«|| =||0€ | | is the empty set. Statement (/3) follows from (iii), by (7.9), 
(7.10), (7.13), and (7.15). Statement (7) follows from (iii), by (7.12). 
Finally, Statement (ô) follows from (ii) and (j3). 
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Given a grating T, there is a smallest ideal of T consisting of the 
chains 0« only, also a largest ideal consisting of all the chains of T. We 
shall denote the smallest ideal by the symbol 0 , and the largest ideal 
by the same symbol V as the grating itself. Obviously, the intersec­
tion r\i$i of the members <£; of an arbitrary family of ideals of T is 
an ideal of I \ Thus, if [K] is any set of chains of T, there is a smallest 
ideal <ï> of T such that we have [i£]ç<ï>. The ideal <ï> is, of course, the 
intersection of all the ideals <!>* of T such that we have [i£]ç^<ï>;. The 
join of a family of ideals <£ will be the smallest ideal <£ such that we 
have $ £ $ , for all members $ of the family. 

A chain K of V will be said to be a cycle, modulo an ideal <ï>, if the 
boundary K' of K is a member of <3>, 

(9.1) K'=Z (ZG$). 

If a chain K belonging to an ideal ^ is a cycle, modulo an ideal <ï>, we 
shall say that K is a cycle of S£, modulo $ . A chain K will be called 
an absolute cycle if its boundary is a zero, 

(9.2) K' = 0. 

The theory of absolute cycles does not require special treatment, since 
an absolute cycle is merely a cycle, modulo the ideal 0 consisting of 
the zeros only. 

[9.2] THEOREM. Let <ï> be an ideal of a grating T. Then: 
(a) All the zeros 0a and all the refinors Ea of T are cycles, modulo <i>. 
(j3) If K is a cycle, modulo <ï>, so also are \K, Kp, K*, irK, KEy 

and K'. 
(7) If K and L are cycles, modulo <£, so also is their product KL. 
(ô) Every linear combination of cycles, modulo 4>, is a cycle,modulo <ï>. 
(e) Every pseudo-combination of cycles, modulo <£, is a cycle, modulo <ï>. 

The theorem follows, at once, from the theorems on loci in §7. We 
leave the routine verification to the reader. 

Now, let * and SF be ideals of a grating T. A chain K of T will be 
said to bound in >£, modulo <£, if it can be written in the form 

(9.3) K=W'+Z ( W e * , Z G $ ) . 

By applying the boundary operator to the two members of (9.3), we 
obtain an expression of the form (9.1), since the chain W" is always a 
zero. Therefore, a chain of Sf which bounds in S?, modulo <3>, is always 
a cycle of St", modulo $ . 

[9.3] THEOREM. Let $ and ^ be ideals of a grating T. Then: 
(a) All the zeros 0a of T bound in SF, modulo <ï>. 
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(j8) If K is a cycle which bounds in S£, modulo <£, so also are \K, 
K', K*t irK, KE, and K'\ 

(7) If K is a cycle which bounds in SF, modulo $, and if L is an arbi­
trary cycle of r , modulo <$, the products KL and LK are cycles bounding 
in ^ , modulo $ . 

(S) Every linear combination of cycles bounding in ty, modulo <£, is 
a cycle bounding in >£, modulo 4>. 

(e) Every pseudo-combination of cycles bounding in ^ , modulo $ , is 
a cycle bounding in >£, modulo <ï>. 

Again, the verification of the theorem is immediate. We shall 
merely give the proof of Statement (7) which involves a minor diffi­
culty. 

According to (9.3) and (9.1), the bounding cycle K can be written 
in the form K= W'+Z, and the boundary of the cycle L in the form 
V = Z (Z, Z G $, W&V). We can therefore write 

KL = W' L + ZL = (WL)'- W*Z + ZL. 

Now, by [9.1 ], the chain WL is necessarily a chain of SF, since W is a 
chain of ^f. Moreover, the chain — W*Z+ZL is a chain of <£, since Z 
and Z are chains of <£. Therefore, the chain XL is of the form (9.3). 
In other words, the chain KL bounds in SF, modulo $. The proof that 
the chain LK bounds in Sf', modulo <£, is treated in a similar manner. 

We shall introduce the notation 

(9.4) K « 0, ( ¥ / * ) , 

to indicate that X is a chain which bounds in ^ , modulo <£. If a 
pseudo-combination bounds in ^ , modulo <E>, 

(9.5) XxJTi e x2ir2 e •.. e xnzn « o, (*/$), 
we can rearrange the terms of the left-hand member of (9.5) in any 
order we please, since the effect of rearranging the terms is merely 
to transform the pseudo-combination X1i^i©X2i^2© • • * @\nKn into 
a permutation of itself. 

10. A permutation theorem. According to §6, the permutors w are 
linear operators which commute with the rank, conjugation, and 
boundary operators. I t would therefore be feasible to identify a chain 
K with its permutations.2 We prefer, however, to let matters stand 
as they are, and to distinguish between the chains K and wK unless, 

2 A similar identification is made in the classical theory of complexes of sim-
plexes, where an oriented simplex is treated as a skew-symmetrical function of its 
w+1 vertices. 
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of course, they happen to be formally identical. I t is of some theoreti­
cal interest that, in view of the following theorem and its corollary, 
we can develop a satisfactory homology theory without having to 
make the identifications. 

[10.1 ] THEOREM. Let K be a chain of a grating T, and let irK be any 
permutation of K, such that the chains K and irK are of the same type a. 
Then the difference between the chains K and irK can always be expressed 
in the form 

(lo.i) K-TK-W+Z (\\W\\Q\\K\\,\\Z\\Q\\K'\\), 

where W is a chain dominated by K and Z a chain dominated by the 
boundary of K. 

PROOF. The theorem is trivial unless the chain K is singular. In­
deed, if K is of regular type a, the only permutation of K of type a 
is K itself. Therefore, the difference K—wK can be put in the form 
(10.1) by writing W=Z = 0a. 

If the type a of K is singular, the theorem reduces, without diffi­
culty, to the special case in which the type of K is of the form a = aafi> 
and in which the permutor w is the invertor (2,1) which merely inter­
changes the first two elementary factors of aafi. Let us therefore first 
dispose of this special case. By grouping together the terms of K with 
the same first two elementary factors, we can express K in the form 

K — aaKu + abK\2 + acKiz 

(10.2) + baK%i + bbK22 + bcK2z 

+ caKzi + cbKzi + ccKw, 

where the Kif s are chains of type /3. Moreover, in the same notation, 
we can write 

urK = aaKn + abK2\ + acKn 

(10.3) + baK12 - bbK22 + bcKz2 

+ caKiz + cbK2Z + ccKw 

(Note the sign of the term —bbK22.) The chain K—TTK is therefore 
of the form 

(10.4) K - <KK = (ab - ba)P + (ac - ca)Q + (be - cb)R + 2bbS, 

where P , Q, R, and S are appropriate linear combinations of the Kif s 
(P = K\2 — K2u and so on). We shall prove that Condition (10.1) is 
fulfilled when W and Z are chosen in the following manner : 
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(10.5) W = {ab- ba)S + {ac - ca)R, Z = K - irK - W', 

where the symbols S and R have the same meaning as in (10.4). From 
the very form of the chain Z, it is clear that W and Z satisfy the equa­
tion (10.1). What we still have to prove is that Wis dominated by K 
and that Z is dominated by the boundary of K. 

Now, it is evident, by inspection, that no two of the chains 
abP, — baP, acQ, —caQy and so on, in the right-hand member of 
(10.4) can have a cell in common, since the cells of abP all have the 
left-hand factor ab, the cells of —baP the left-hand factor ba, and so 
on. We can therefore write the equality 

\\K - TTK\\ = | |ÖJP | | W | | - baP\\ U \\acQ\\ \J • • • U ||2MS||. 

By a similar argument, applied to (10.5), we can also write the equal­
ity 

|| W\\ = ||o&S|| U || - baS\\ U \\acR\\ U || - caR\\. 

Furthermore, in view of (7.8) and (7.4), the terms ab S and —baSoî W 
are dominated by the term 2bbS of K—TTK, and the terms acR and 
— caR of W are dominated by the term bcR of K—irK, 

\\abS\\=\\-baS\\=\\2bbS\\=\\b\\r\\\s\\, 

\\acR\\=\\-caR\\=\\bcR\\=\\b\\K\\R\\. 

We can therefore write 

\\W\\Q\\K-XK\\Q\\K\\KJ\\TK\\Q\\K\\, 

which proves that the chain W is dominated by the chain K. {Re­
mark. The proof makes use of the fact that the ring of coefficients [X] 
has no zero divisors, since we have to assume ||2665|| =||&&»S||.) 

To complete the proof for the special case under consideration, we 
have only to show that the chain Z is dominated by the chain Kf. 
According to (10.5), we obtain, by direct calculation, 

W' = - {ab - ba){R + S') + {ac - ca)R' 
(10.6) 

+ {be- cb)R + 2bbS. 

Therefore, by (10.4) and (10.6), the chain Z is of the form 

Z = K - TTK - W' = {ab - ba)M + {ac - ca)N 

(10.7) {M = P + S' + R, N = Q- R'). 

Next, we construct the boundary Z ' of Z. Since the expression (10.7) 
for Z is similar in form to the expression (10.5) for W, we can write 
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Z' = - (ab - ba)(N + M') + (ac - ca)N' 

+ (be - cb)N + 2bbM, 

without formal computation, by comparison with the expression 
(10.6) for W'. Finally, by an argument similar to the one made a 
moment ago, we note that the terms abM and —baM of Z are domi­
nated by the term 2bbM of Z', and that the terms acN and — caN of 
Z are dominated by the term bcN of Z ' . Therefore, we can write 

||Z|| ç IIZ'II = \\K' - TK'\\ Ç \\K'\\ VJ \\TK'\\ Ç \\K'\\. 

This completes the proof for the special case under consideration. 
The rest of the argument is trivial. We next consider the somewhat 

more general case in which the type a of K is of the form a^fiayab, 
with two identical factors a, and in which the permutor IT is the in-
vertor which merely interchanges the two factors a. Let K be a per­
mutor which transforms the type a into the type Ka = aafiyh, and let co 
be the invertor (2, 1). Then, according to the case already considered, 
we can write 

KK - V(KK) = W'+Z (\\W\\ Ç \\KK\\, \\Z\\ Ç \\KK'\\). 

Thus, we have, at once, 

K-irK = K-^KK - «(«£)] = K-1[W' - Z], 

(Ikwll = NI s IMI - Ml. M l = \\4 ç IMI = 11*11). 
as required. 

The proof of the theorem for the completely general case follows 
directly from the fact that every permutor IT which leaves the type a 
invariant is the resultant of invertors of the kind just considered. 

[10.2] COROLLARY. Let $ and SF be ideals of a grating Y and let K 
be any cycle of ^ , modulo <3>. Then if irK is any permutation of K the 
pseudo-difference K-&TTK bounds in ^ , modulo <£>: 

(10.9) K&TK~0, 0*/*) . 

PROOF. The left-hand member of (10.9) can be written K -TTE 
—E "jrK, where E is the refinor of the same type type as K. More­
over, the chain E -irK is a permutation of the chain K -irE. There­
fore, by the theorem, we can write 

K-TE- ETK = W' +Z, 
(10'10) « I c | |*.,E|| - ||*||f ||z|| c UK-.EYW - 11*11). 
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Now, the chain W belongs to the ideal S£, since it is dominated by 
the member K of \[', and the chain Z belongs to the ideal $ , since it is 
dominated by the boundary K' of the cycle K of ^ , modulo <£>, which 
boundary K' is, of course, a chain of <£. Thus, the desired relation 
(10.9) is implied by (10.10). 

11. Homologies, homology groups, and homology rings. The no­
tion of homology is closely related to the notion of bounding. Let <3> 
and ^ be ideals of a grating T, and let Ka and Lp be chains of T. We 
shall say that the chain Ka is homologous to the chain Lp in ̂ , 
modulo <ï>, 

(11.1) Ka~L^ ( ¥ / * ) , 

if there exists a refinement of the pseudo-difference Ka-&Lp such that 
the refinement bounds in ty, modulo <ï>, 

(11.2) (KaEn - EaLp)Ey = Ka e Lp © 07 « 0, ( * / $ ) . 

The relation of homology is clearly symmetrical, 

(11.3) Ka~Lf>-*Lfi~Ka, ( * / * ) , 

since the relation (11.2) goes over into the relation Lf3Oi£a©07«0, 
by a permutation and a change of sign. In order that Ka be homolo­
gous to Lp it is sufficient, though not necessary, that the pseudo-
difference Ka-&Lp bound, since we can then write 

(n.4) Ka e Le = Ka e Lp © o€ « o, (*/*). 
Another useful condition, which is both necessary and sufficient, is 
that there be a chain F 7 of T satisfying the joint relations 

(li.s) j c«e£*er 7 «o , F 7 « O , (*/#)• 
Indeed, the fulfillment of (11.2) implies the fulfillment of (11.5) with 
F 7 set equal to 0T. On the other hand, the fulfillment of the first part 
of (11.5) implies that we have 

(ii.6) (KaoLp® o7) + (o«eo^e F7) « o, (*/$), 
by (5.13). Moreover, the fulfillment of the second part of (11.5) im­
plies the relation Oa©O0© F 7 « 0 , since 0a®0p@ F 7 is a permutation 
of a refinement of F7 . By combining this relation with (11.6), we 
obtain (11.2). 

In the remainder of this section, we shall confine our attention to 
cycles K, L, M, • • • of ^ , modulo $ , as a result of which the theory 
will assume a particularly simple form. In the first place, it is clear 
that a cycle K of ^ , modulo * , is homologous to all its permutations, 
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(11.7) Ka~>*Kai ( ¥ / * ) , 

by (10.9) and (11.4). Thus, in particular, the homology relation, as 
applied to cycles of ^f, modulo $, is reflexive, 

(11.8) Ka~Ka, ( ¥ / * ) . 

We can further verify that the homology relation, as applied to cycles, 
is transitive, 

(11.9) Ka^Lft, Lp~My-*Ka~My, ( * /$ ) . 

Indeed, the relations KaOLp ©0M « 0 and Lp-Q-My ©0„ « 0 together im­
ply the relation Ka-&My®(Lp-&Lp®0li@0v) « 0 , by pseudo-addition 
and permutation. Moreover, the refinement Lp-Q-Le®0li®0v of Lp-Q-Lp 
is a bounding cycle, by (10.9). Therefore, we have Ka~My, by (11.5). 

In view of (11.8), (11.3), and (11.9), the cycles K of ^ , modulo *, 
fall into mutually exclusive homology classes [K], such that two cycles 
belong to the same class if, and only if, they are homologous in ^f, 
modulo <ï>, 

(11.10) [K] = [L]<->K~L, ( * / $ ) . 

The permutations irK of a cycle K all belong to the same class [K], 
by (11.7). So also do the refinements KE=K®0 of K, since we have 
Z e ( K 0 O ) « 0 , by (10.9). The class [0£], which we shall call the zero 
class, will consist of all cycles Ka such that some refinement Ka®0y 

of Ka bounds in ^ , modulo <ï>. To verify this, we only have to write 
Lp = 0e in (11.2). In particular, the class [0€] will include all the zeros 
0« of T and all the chains of <&nSI>\ 

The constituents, conjugate, and boundary of a class [K] will be de­
fined by the formulae 

(11.11) [K)> = [K>], [K]* = [K*], [K]' = [K'] = [0.]. 

To justify the definitions, we must be sure that the classes [Kp], 
[K*], and [K'] are independent of the choice of the cycle K within 
its class [K], 

(11.12) K^K-ÏK^KP, K*~K*, K'~K', (¥/*). 

The verification is immediate, since the relation Z © I © 0 « 0 implies 
the relations ( j £ e # © 0 ) ' = £ > e l > © 0 « 0 , and so on. The class [K'] 
is, of course, the zero class, since the boundary K' of a cycle of SP", 
modulo <ï>, is a chain of <3>. 

The sum of two homology classes will be defined by the formula 

(11.13) [K]+ [L] = [ J C 0 I ] . 
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Here again, we must be sure that the class [i£©L] is independent of 
the choice of the chains K and L within their respective classes, 

(11.14) K~ K, L~L->K®L~K®L, ( * / $ ) . 

The proof consists merely in noting that the relations i £ O ^ © 0 M « 0 
and l e l © 0 , « 0 imply the relation (K®L)-&(K®L) ©0M„«0, by 
pseudo-summation and permutation. The sum (11.13) is associative, 
since pseudo-summation is associative; it is commutative, since the 
chains K®L and L®K differ, at most, by a permutation; the class 
[0É] is the zero with respect to class addition, 

(11.15) [K] + [0.] = [K ® 0.] = [K]\ 

the class [ — i f ] is the negative of the class [K], 

(11.16) [K] + [ - l ] = [ 2 C e i f ] = [0.], 

by (10.9). In other words, the homology classes form an additive group. 
The following two theorems will enable us to operate more freely 

with homologies. Let Ka and La be cycles of SF, modulo $, both of the 
same type a. 

Then we have 

(11.17) La « 0 -» Ka + La ~ Ka, ( * /* ) 

and 

(11 . 18) Ka ® La ~ Ka + La, ( ¥ / * ) . 

The proof of (11.17) is as follows. According to (11.4), the relation 
(Ka+La)-Q-Ka^0 is a sufficient condition that the homology Ka+La 

~Ka be true. With the aid of (5.13), we write the relation in the al­
ternative form (Ka®-Ka) + (La®0a) ~ 0 . The first term on the left 
bounds, by (10.9); the second term bounds, since La®0a is a refine­
ment of the bounding chain La. Thus, the relation is verified, and 
(11.17) is established. The second theorem, (11.17), follows immedi­
ately from the identity 

Ka®La= [(Ka + La) ® 0«] - [L* O £«] 

which is also obtained from (5.13). The chain [£«•©•£«] bounds, by 
(10.9). Therefore, we have 

Ka ® La ~ (Ka + La) ® 0« ~ Ka + La, ( ¥ / $ ) , 

by (11.17). As a corollary to (11.18), we can write 

(11.19) [Ka]+ [La] = [Ka+La]. 
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The product of two homology classes will be defined by the formula 

(11.20) [K][L]=[KL]. 

To justify the definition, we must, of course, prove the following: 

(11.21) K~K,L~L->KL~'KL, (* /$ ) , 

where all the chains involved are cycles of ^ , modulo <£. We begin 
with a lemma. Let Ka and LB be cycles of ^ , modulo <£>, and let My 

be an arbitrary cycle of T, modulo <£. Then we have 

(11.22) Ka~L,->\ " ' "" ( * / # ) . 
\MyKa ~ MyL8, 

PROOF. The homology Ka~Lp implies a relation of the form (11.2), 
which can be written in the alternative form 

KaE8E, - EaLBE> « 0, ( ¥ / * ) , 

by using the product notation for a refinement. Therefore, since My 

is a cycle, modulo <ï>, we can write 

(KaE8E, - EaL8E,)My « 0, (* /$ ) , 

from which we can infer 

KaEpEpMy ~ EaLpE^My, ( ¥ / $ ) . 

Thus, by refinement and permutation, we have 

KaMy~KaMyEaEu~KaEaEuMy~EaL8ErMy , , v 

^LpMyEaEp ~ LfiMy, 

The second half of the lemma is proved in a similar manner. The de­
sired theorem (11.21) is an immediate consequence of the lemma, 
since we can now write KL~KL~KL. 

Class multiplication is associative, since chain multiplication is as­
sociative. We shall prove that it is two-way distributive with respect 
to chain addition : 

(11.23) K(L ® M)~KL@ KM, (L ® M)K ~ LK @ MK, ( ¥ / $ ) . 

PROOF. We have the identity 

Ka(LB 0 My) = KaLBEy + KaE8My. 

Now, by (11.18), the expression on the right is homologous in SF, 
modulo <ï>, to 

KaL8Ey @ KaE3My, 



19471 GRATINGS AND HOMOLOGY THEORY 229 

which last is homologous, by (11.14), to 

KaU © KaMy, 

since we have KaLp~KaLpEy and KaMy~KaMyEp^KaEpMy. 
In view of the properties of class addition and class multiplication, 

it is clear that the homology classes form an ordinary (noncommuta-
tive) ring. We shall call the ring the homology ring 3C(^/*) of the 
ideal ^ , modulo the ideal 4>. 

The pth homology group ^ ( S F / ^ ) of >£", modulo <£, will be the 
additive group formed by the pth constituents [K]p of the homology 
classes [K]. In view of (3.5) and (11.19), we shall have 

(11.24) [K]-[K]°+ [KÏ+--. + [K]n, 

and, by (3.7), 

[K]» = [K]>, 
(11-25) n 

[K]~ = [0.] (p * <r). 
In other words, the additive group formed by the members of the 
homology ring 3C (>£/*), will be the (finite) direct sum of the homol­
ogy groups SCO^/*), p = 0 ,1 , 2, • • • . In general, the structure of the 
homology ring 3C(^/*) will not be fully determined by the structure 
of the homology groups 5CP(^/*). In other words, the ring 3C (>£/$) 
will be a more powerful invariant than the combined groups 5Cp(^/$). 
Two homology rings 3C and Ç will be said to be completely isomorphic 
if, and only if, the members [K] of 3C are paired in an isomorphism 
with the members [L] of Ç in such a manner that the pth constitu­
ent [K]p of [K] is always paired with the pth constituent [L]p of the 
corresponding [l,], p = 0 , 1, 2, • • • . The homology rings 3C and Ç will 
be regarded as equivalent if, and only if, they are completely isomorph­
ic. In other words, a homology ring 3C will be treated as a ring with 
the operators p. 

12. The homology groups and ring of an ideal. Let T be a grating, 
and let ti be the ideal made up of the zeros 0a of I \ By the homology 
ring 3C(<£) of an ideal $ of T, we shall mean the homology ring of 3>, 
modulo the ideal £2, 

(12.1) 3C(*) = 3C($/Û). 

Similarly, by the homology groups 3Cp(<ï>) of <ï>, we shall mean the ho­
mology groups 

(12.2) 3Co($) = 3C'($/0). 
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The structure of the homology ring of an ideal $ is simpler than that 
of a general homology ring #3(^/30, as will be seen by the following 
analysis. 

[12.1 ] THEOREM. Every absolute 0-cycle K of a grating T is a multi­
ple of a refinor, 

(12.3) K' = 0 -> some K = \E (p(X) = 0). 

Every absolute p-cycle K of T, p>0, is a boundary, 

(12.4) K' = 0 -> some K = R' (p(K) > 0). 

PROOF. We prove the theorem by induction on the degree m of the 
cycle K. The case m = 0 is trivial, since the only chains of degree 0 
are the 0-cycles XEe, and since the only p-cycle of degree 0, p > 0, is the 
chain 0€ which is its own boundary. The case m > 0 is treated by ex­
pressing the type a of K in the form a = a(3, where the degree of the 
type j3 is m — 1. The p-cycle K can be written in the form 

(12.5) K = aL + bM + cN, 

where L and N are p-chains of /3, and where M is a (p — 1)-chain of j8. 
Therefore, the boundary of K is of the form 

(12.6) K' = aV + b(L - M' - N) + cNf = 0, 

from which we infer 

(12.7) V = 0, L-M'-N=*0, N' = 0. 

Let us first consider the case in which the rank of the cycle K is 0. 
In this case, the term bM in (12.5) is missing, and (12.7) reduces to 

V = 0, L - N = 0, N' = 0. 

We conclude that L and N are identical absolute 0-cycles of rank 
m — l. Thus, by the hypothesis of the induction, we can assume 

I, = N = \Ep, 

whence, 

K = aL + cN = X(a + c)JE0 = XEa, 

as required. 
Finally, we consider the case in which the rank of K is greater 

than 0. According to (12.7), the chain L must be an absolute p-cycle 
of degree m — l. Therefore, by the hypothesis of the induction, we 
can express L as a boundary, L = Pf. Moreover, again by (12.7), we 
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can write N=L-M'=P'-M'. By eliminating L and N from (12.5), 
we obtain 

K - aP' + bM + c(P' - Mf) = [{a + c)P - cM]', 

which is of the desired form K = R'. 

[12.2] COROLLARY. The homology ring of the maximal ideal T of a 
grating T is made up of homology classes of rank 0 and is isomorphic 
with the ring of coefficients [X]. 

PROOF. We have 

K ~ K* + K1 H + K™ ~ \E€ (Ke~0,p> 0), 

so that each homology class is of the form [XE€]. Thus, to complete 
the proof, we have only to show that the classes [XEe] and \jiEe\ are 
distinct whenever X and jot are distinct. Now, if the classes were not 
distinct, we would have [(X—ju)E€]= [0€], X T̂ JIA, which would imply 
that some refinement (X—ix)Ea of (\—fx)E€ was a boundary. But the 
only chains of rank 0 which can bound are the zeros, since there are 
no chains of negative rank. 

[12.3] COROLLARY. Let <ï> be any proper ideal of a grating T, $ 9^ T. 
Then the product KL of two absolute cycles K and L of $ always bounds 
in $ . 

Proof. The chain K is an absolute cycle of 3>; therefore, a fortiori, 
it is an absolute cycle of T. Suppose we resolve the cycle K into its 
constituents, 

K = K« + Kl-\ + K™. 

Then, according to the theorem, the 0th constituent K° must be a 
multiple of a refinor, i^°=XE, while the other constituents Kp must 
be boundaries. Moreover, the coefficient X of the 0th constituent 
K°=\E must vanish, otherwise \E would be a chain of <£; whence 
all chains of T would be chains of $ , since they would all be domi­
nated by XE; whence $ would not be a proper ideal of T, as is being 
assumed. We conclude that the chain K is a boundary, K = R'. We 
further conclude that the product KL is of the form KL = R'L = (RL) ' 
—R*L' = (RL)'1 since the boundary L' of the absolute cycle L is a 
zero. To complete the argument, we have only to observe that the 
chain RL belongs to the ideal * , since L belongs to <£. Since the 
product KL bounds the chain RL of <ï>, the theorem is proved. 

The homology ring of an ideal $ is the analogue of the classical in­
tersection ring of a region of the space Sw of n real variables. 
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13. Invariants of topological spaces. We shall now prove two obvi­
ous lemmas which will have significant topological applications. 

[13.1] LEMMA. Let (T, ƒ, X) be a representation of a grating Y on 
a point set X. Then every subset Xi of X determines an ideal <£* of Y 
consisting of all chains K of Y such that their loci are made up of points 
ofXh\K\<^Xi. 

PROOF. The set <£*• is an ideal of Y if it fulfills Conditions (i), (ii), 
and (iii) at the beginning of §9. We verify, by inspection, that the 
set $ ; fulfills Conditions (i) and (ii). I t also fulfills Condition (iii), 
since | | X | | Ç | | L | | implies \K\ C | i | , by (8.1); whence JLJGX, and 
| |Z | |C | |L | | together imply \K\ C | L | G * . . 

According to the lemma, there is an invariant ideal 3>o of the repre­
sentation (T, ƒ, X) consisting of all chains of Y with empty loci. Thus, 
the homology rings 5C(r/$0) and 3C($o), and the corresponding ho­
mology groups 5Cp(r/$o) and 5CP($0), are invariants of the representa­
tion. 

[13.2] LEMMA. Let (T, ƒ, X) be a continuous representation o f a grat­
ing Y on a topological space X. Then there exists an ideal tyc of Y con­
sisting of all chains K of Y such that their loci are compact* 

PROOF. The locus of the zero 0e is the empty set, which is compact; 
therefore, Condition (i) is satisfied. The union of two closed, compact 
sets is closed, compact; therefore, Condition (ii) is satisfied. Every 
closed subset of a closed, compact set is closed, compact; therefore, 
Condition (iii) is satisfied, since | |ÜCJ |C | |L | | implies \K\ CIL]. 

According to the lemmas, there are two significant ideals of a con­
tinuous representation (!?,ƒ, X) : the ideal $o consisting of the chains 
of T with empty loci, and the ideal ^fc consisting of the chains with 
compact loci. We can therefore obtain the following invariant rings of 
the representation: 3C(r /^ c ) , 3C(r/#0) , 3C(*c/3>o), 3C(^C), 3C($o). 
Among these invariants, the most significant one is the ring X^c/çÊo)-
We shall call this ring the homology ring of the representation. More­
over, we shall call the associated groups 3CP (SF<;/<£>()) the homology 
groups of the representation. 

Given a topological space X, there are certain grating representa­
tions (T, ƒ, X) on X which are themselves topological invariants of 
the space. The invariant groups and rings of these representations 
are, of course, invariants of the space. The representation described 

3 By a compact set, we shall mean a set satisfying the complete Heine-Borel-
Lebesgue condition. In the terminology of Alexandroff and Hopf, such a set would 
be said to be bicompact. 
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in Example A of §7 is clearly a topological invariant of the space X. 
Other significant invariant representations are the following : 

Example B. Let X be a topological space, and let [7] be the set of 
all closed subsets of X. We treat each member 7* of [7] as the symbol 
for a cut consisting of three abstract elements a^ &*, and d. The cuts 
ji form a grating T = [7]. Moreover, there is a continuous representa­
tion (T, ƒ, X) of the grating T on the space X, such that the determin­
ing function of the representation is the function ƒ(7, x) which takes 
on the values — 1, 0, or 1 according as the point x is interior to, on 
the frontier of, or exterior to the closed set 7. 

Example C. Let X be a topological space, and let [7] be the set of 
all ordered pairs 7» = (At, d) of disjoint open subsets Ai and C% of X. 
We treat each member 7* of [7] as the symbol for a cut with the ele­
ments a», hi, and d. The cuts 7» form a grating T= [7]. Again, there 
is a continuous representation (T, ƒ, X) of T on X, such that the de­
termining function f(yt x) is the one which takes on the value — 1 
when x is a point of A, the value 1 when x is a point of C, and the value 
0 when x is a point of the complement of A^JC. 

In a continuation of this paper, which will deal specifically with the 
the applications of grating theory to hausdorff spaces, we shall prove 
the following theorem: 

Given a locally compact hausdorff space X, the homology ring 
rO^c/^o) of the continuous representation (T, ƒ, X) described in Ex­
ample A of §7 is completely isomorphic with the homology rings of 
the representations described in Examples B and C. Moreover, if the 
space X is an (open or closed) manifold, the homology ring T(^fc/^o) 
is completely isomorphic with the classical intersection ring of the 
manifold, provided the classical cycles of dimensionality k are inter­
preted as of rank p = n — k. 

If X is a space of unrestricted generality, the homology ring of the 
representation in Example A need not be completely isomorphic with 
the homology rings of the representations in Examples B and C. 
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