OPEN TRANSFORMATIONS AND DIMENSION¹

J. H. ROBERTS

This paper considers separable metric spaces A and B and open transformations. If, for each $x \in A$, $f(x) \in B$ and the image under f of every open set in A is a set open in B, then f is an open transformation. Continuity of f is not assumed. Such transformations have been studied by Rhoda Manning [1].

THEOREM 1. If f(A) = B where f is open, then there exists a subset A_1 of A such that (1) $f(A_1) = B$, (2) for $y \in B$, the set $f^{-1}(y) \cdot A_1$ is countable, and (3) f, considered as a transformation of A_1 into B, is open.

PROOF. Let K_1, K_2, \cdots denote the elements of a countable base (open sets) for the space A. For every $y \in B$ and each i let P_{yi} be a point of $K_i \cdot f^{-1}(y)$, provided this set is nonvacuous. Let A_1 be the set of all points P_{yi} so obtained. Properties (1) and (2) are obvious. To prove (3), let V be an open set in A_1 , and U an open set in A such that $U \cdot A_1 = V$. Now for every y the set $f^{-1}(y) \cdot A_1$ is dense in $f^{-1}(y)$. Hence if $f^{-1}(y)$ has a point in U then it has a point in $A_1 \cdot U$ so f(V) = f(U) is an open set in B.

THEOREM 2. There exist countable-fold open mappings³ which increase dimension.

PROOF. There exist open mappings which increase dimension [2]. Theorem 2 follows by applying Theorem 1 to any such example.⁴

THEOREM 3. If dim A = n and $-1 < m \le n$, then there exists a B and a transformation f such that (1) f(A) = B, (2) f is open and 1-1, and (3) dim B = m. In other words, dimension can be lowered at will by a 1-1 open transformation.⁵

Presented to the Society, April 27, 1946; received by the editors October 14, 1946.

¹ One statement in the abstract (Bull. Amer. Math. Soc. Abstract 59-5-210) is incorrect. Theorem 4 gives the correct statement.

² Numbers in brackets refer to the bibliography.

³ A mapping is a continuous transformation.

⁴ Alexandroff [5] has proved that if A is *compact* then no countable-fold open mapping can increase dimension.

⁶ Compare the following special case of a theorem of Hurewicz [4, p. 91, Theorem VI 7]): "If f is a closed mapping of A into B and for each $y \in B$, $f^{-1}(y)$ is zero-dimensional, then dim $B \ge \dim A$." In a footnote (loc. cit.) the authors state that it is not known if Theorem VI 7 is true for open mappings. The answer is in the negative and their example VI 10 is a counter example, as the mapping f is actually open.

PROOF. It is sufficient to prove the theorem for m=n-1. For if f(A)=B and g(B)=C, where f and g are open and 1-1, then the product gf is open and 1-1 and transforms A onto C.

The author has shown⁶ that there exists a space B_1 of dimension n-1, and an at most 2-to-1 mapping ϕ of B_1 onto A. Furthermore the subset of B_1 consisting of all x such that $\phi^{-1}\phi(x)=x$ is (n-1)-dimensional. For $y \in A$, if $\phi^{-1}(y)$ is a single point then write $f(y) = \phi^{-1}(y)$. If $\phi^{-1}(y)$ is double-valued, select arbitrarily one point in $\phi^{-1}(y)$ and define f(y) to be this point. Let f(A) = B. Then B is of dimension n-1 and f, as inverse of a 1-1 continuous function, is open.

Remark. If f(A) = B is open and 1-1, then f^{-1} is continuous and 1-1. Thus Theorem 3 provides examples of arbitrary increases of dimension by 1-1 mappings.

THEOREM 4. Suppose f(A) = B is open, B is locally compact, and for each $y \in B$ the set $f^{-1}(y)$ is not dense-in-itself. Then dim $B \subseteq \dim A$.

PROOF. Let K_1, K_2, \cdots be an open base for A. For each i let A_i be the set of all $x \in K_i$ such that if $x' \in K_i$ and f(x') = f(x), then x' = x, and let $B_i = f(A_i)$. For $y \in B$, $f^{-1}(y)$ contains an isolated point (with respect to $f^{-1}(y)$), so $B = \sum_{i=1}^{\infty} B_i$. We prove next that B_i is closed in the open set $f(K_i)$. For suppose on the contrary that there exists a sequence $y_n \to y$, where y and each y_n are in $f(K_i)$, $y_n \in B_i$ but $y \notin B_i$. Since $y \in f(K_i)$ but not in B_i , there exist distinct points x and x' in K_i such that f(x) = f(x') = y. For each n there is a unique $x_n \in K_i$ such that $f(x_n) = y_n$. Since $y_n \to y$ it follows that $\lim_{n \to \infty} f^{-1}(y_n) \supset f^{-1}(y) \supset (x+x')$. But $f^{-1}(y_n)$ has only the one point x_n in K. This gives a contradiction.

Now let M_{i1} , M_{i2} , \cdots be closed and compact subsets of B with $M_{i1}+M_{i2}+\cdots=f(K_i)$. Write $B_{ij}=B_i\cdot M_{ij}$. Then B_{ij} is a compact space and $B=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}B_{ij}$. Hence if dim $B_{ij}\leq \dim A$ for all i and j, then dim $B\leq \dim A$ (see [4, Theorem III 2, p. 30]). Write $A_{ij}=A_i\cdot f^{-1}(B_{ij})$. Over A_{ij} , f is open and 1-1 to B_{ij} . For $y\in B_{ij}$ define $g(y)=x\in A_{ij}$ such that f(x)=y. Now g, as the inverse of any open 1-1 transformation, is continuous; thus g is a mapping and $g(B_{ij})=A_{ij}$. Furthermore B_{ij} is compact, so that g is a closed mapping. Also g is 1-1. Then g dim g di

Remark. In Theorem 4 the assumption that B is locally compact

⁶ See [3], especially Theorem 9.1. If the M of this theorem is the space A, then M_1 is the desired space B_1 and ϕ_1 is the desired mapping ϕ .

⁷ See footnote 4.

⁸ See [4, Theorem VI 7, p. 91].

can be replaced by the weaker assumption that every point of B has arbitrarily small neighborhoods with compact boundary. The proof is not given. Some assumption of compactness seems necessary. Consider the following example.

Example. There exist, in the plane, spaces A and B and an open 1-1 transformation f with f(A) = B, with dim A = 0 and dim B = 1.

The space B is an example due to Sierpiński [6, pp. 81–83]. This space B has the following properties: (1) it is 1-dimensional, (2) it lies in the plane with $0 \le x \le 1$, $0 \le y \le 1$, (3) it contains at most one point (x, y) for a given x, and (4) the set of all points (x, 0), such that for some y the point $(x, y) \in B$, is homeomorphic to the Cantor ternary set. Let A be this set defined by (4). Then A is the projection of B onto the x-axis, and for $(x, 0) \in A$ there is a single point (x, y) in B. Define f as follows: $f(x, 0) = f(x, y) \in B$. Then f has the required properties.

BIBLIOGRAPHY

- 1. Rhoda Manning, Open and closed transformations, Duke Math. J. vol. 13 (1946) pp. 179-184.
- 2. A. Kolmogoroff, Über offene Abbildungen, Ann. of Math. vol. 38 (1937) pp. 36-38.
 - 3. J. H. Roberts, A theorem on dimension, Duke Math. J. vol. 8 (1941) pp. 565-574.
 - 4. W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press.
- P. Alexandroff, Über abzühlbar-facheoffene Abbildungen, C. R. (Doklady) Acad.
 URSS. vol. 4 (1936) pp. 295–299.
- 6. W. Sierpiński, Sur les ensembles connexes et non connexes, Fund. Math. vol. 2 (1921) pp. 81-95.

DUKE UNIVERSITY