
ON A GENERALIZATION OF THE STIELTJES 
MOMENT PROBLEM 
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The "generalised moment problem" 

(1) f fi*da(t) = Mn (0 = Xo < \i < X2 • • • < Xn -» oo ) 
Jo 

is said to be determined if there is at most one increasing function 
a(t) satisfying (1) and normalized by a(0)==0. R. P. Boas, Jr., who 
first considered this problem [l]1 gave conditions under which (1) is 
determined. These do not include the best known result in the classi­
cal case Xw = w, namely Carleman's criterion: If \n~n and S^n""1'2* 
= oo, then (1) is determined. I shall now prove a theorem including 
Carleman's test as a special case. On the other hand this theorem will 
not include the results of Boas, as I shall from now on assume 

(2) Xn+1 - Xn > c (n » 1, 2, • • • ) 

for some c>0. 
Let 

Hr) - exp { Z X71} . 

THEOREM. If there are a non-increasing function <£(r) and positive 
constants A and a such that 

*(r) > A{r/4>{r)Y 

and if 

y-y Xn — Xn_i 
(3) > rs 00 , 

2 Mi/aN>(Xn-l) 
then (1) is determined. 

The proof is based on the following lemma. 

LEMMA. If (2) is the caset then 

" \P + z 
G(z) - I I *~2'/x 

„=i X„ — z 
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is regular apart from poles at the \, and for some constant B 

| G(z) | < B'tyir))-* (s - * + ty - re") 

in x è 0 except in circles of radius c/S round the Xv. 

This lemma is proved in [2]. 
PROOF OF THE THEOREM. We must prove that two increasing solu­

tions, ai(t) and «2(0» of (1) can differ by a constant only. Consider 

1 f00 

F(z) = — I t*d(ai - a2). 
2 J 0 

F(z) is regular in $lz~x>0 and 

2 J 0 

say. Since (Jotxd(ai+a2)/f£d(ai+a2))1/x is an increasing function of 
#, by Holder's inequality, we may choose 

(4) v(x) - KtxTK (Xn-i < * ^ Xn). 

Also F(Xn)=0 (w = l, 2, • • • ), but unless a i (0-«2(0= const., F(s) 
does not vanish identically. It is therefore sufficient to prove that 
F(z) is identically zero. 

If G(z) is the function defined in the lemma, let 

H(z)s~> = F(z/a)G{z/a)z*e-<^l+*\\ + z)~*s~*. 

This function is regular in 9îz>0. Also, if z~x+iy — rei$ 

\F(z/a)G(z/a)\ g (v(x/a)<t>(r/a)BA~1ar-1)* 

^ (v(x/a)4>(x/a)BA-lar-1)*, 

since 0 sin 0è?r|sin ö|/2 — cos 0 for |fl| ^7r/2; 

| y-*] » I s\~xev*T*a. 

Therefore 

(5) | H(z)s-1 < (v(x/a)<j>(x/a) \ s|-i)*<r<*/2-larg.i)M(i + ,)-», 

provided that C is taken sufficiently large. Consider now 

H(z)s~'dz. 
1 - 1 0 0 
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Because of (5) the integral is uniformly convergent for 15 j è 1, | arg s| 
^7r/2. In particular g(s) is a regular function of 5 in | s | > l , 
I arg s I <7r/2. I t also follows from (5) that the line of integration in 
(6) may be shifted to any other line x~b>0. Taking &=£ and using 
(5) gives 

(7) I g(s) I < 2(üft/a)*ft/«))« \ s |-« ( | arg s | <J r/2) 

for every £ > 0 . 
By a theorem due to Carleman and Ostrowski (7) implies that g(s) 

vanishes identically, if 

(8) ƒ (v(i/aMS/aft-VS « oo 

(see [3], in particular Satz IV and §14). 
By (4) 

J <*«-! M1/aXtt*(Xn~l) 
n 

so that (3) implies (8). Therefore g(s) vanishes identically. By a well 
known uniqueness theorem for the Mellin transform this implies that 
H(z) is zero and so F(z) must be equal to zero everywhere. Q.e.d. 
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