BIBLIOGRAPHY

1. P. Erdös and A. H. Stone, Some remarks on almost periodic transformations, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 126-130.

2. W. H. Gottschalk, Powers of homeomorphisms with almost periodic properties, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 222-227.

University of Pennsylvania and University of Virginia

A REMARK ON DENSITY CHARACTERS

EDWIN HEWITT¹

Let X be an arbitrary topological space satisfying the T_0 -separation axiom [1, Chap. 1, §4, p. 58].² We recall the following definition [3, p. 329].

DEFINITION 1. The least cardinal number of a dense subset of the space X is said to be the density character of X. It is denoted by the symbol $\Xi(X)$.

We denote the cardinal number of a set A by |A|. Performing the print of the set A by |A|.

Pospíšil has pointed out [4] that if X is a Hausdorff space, then

(1) $|X| \leq 2^{2^{\mathbb{Z}(X)}}.$

This inequality is easily established. Let D be a dense subset of the Hausdorff space X such that $|D| = \Xi(X)$. For an arbitrary point $p \in X$ and an arbitrary complete neighborhood system \mathcal{U}_p at p, let \mathcal{D}_p be the family of all sets $U \cap D$, where $U \in \mathcal{U}_p$. Thus to every point of X, a certain family of subsets of D is assigned. Since X is a Hausdorff space, $\mathcal{D}_p \neq \mathcal{D}_q$ whenever $p \neq q$, and the correspondence assigning each point p to the family \mathcal{D}_p is one-to-one. Since X is in one-to-one correspondence with a sub-hierarchy of the hierarchy of all families of subsets of D, the inequality (1) follows.

It may be remarked in passing that the inequality (1) does not obtain for all T_1 -spaces. Let m be a cardinal number greater than 2^c , where $c=2^{\aleph_0}$. Let Z be a T_1 -space of cardinal number m and with the property that the only closed proper subsets of Z are finite or

Received by the editors March 5, 1946.

¹ Post-service fellow of the John Simon Guggenheim Memorial Foundation.

² Numbers in brackets refer to the Bibliography at the end of the paper.

void. Then it is obvious that $\Xi(Z) = \aleph_0$, and that (1) does not obtain for the space Z.

For some Hausdorff spaces, the equality

$$(2) |X| = 2^{2^{\Xi(X)}}$$

obtains. Pospíšil [4] has constructed a large family of such Hausdorff spaces, and has shown [5] that the Stone-Čech β for any discrete infinite space satisfies it as well. It is the purpose of this note to exhibit another class of Hausdorff spaces for which (2) holds.

THEOREM. Let Λ be an index class such that $|\Lambda| = 2^m$ where m is an infinite cardinal number. Let $\{X_{\lambda}\}_{\lambda \in \Lambda}$ be a family of Hausdorff spaces such that $|X_{\lambda}| \geq 2$ and $\Xi(X_{\lambda}) \leq m$ for all $\lambda \in \Lambda$. Then $|\mathfrak{P}_{\lambda \in \Lambda} X_{\lambda}| = 2^{2^m}$ and $\Xi(\mathfrak{P}_{\lambda \in \Lambda} X_{\lambda}) = m$.

PROOF. We first consider the set Λ as a topological space itself. Clearly, it may be put into one-to-one correspondence with the Cartesian product $\mathfrak{P}_{\mu \in M} A_{\mu}$, where each A_{μ} is a Hausdorff space containing exactly two points and the index class M has cardinal number m. As is well known, this Cartesian product is a bicompact Hausdorff space with cardinal number $2^{\mathfrak{m}}$ and a basis of open sets with cardinal number m. We may consequently regard Λ as being a Hausdorff space with a basis \mathcal{B} of open sets such that $|\mathcal{B}| = \mathfrak{m}$.

Let $y^0 = \{q_{\lambda}{}^0\}$ be a fixed point in the space $P_{\lambda \in \Lambda} X_{\lambda}$. Let D_{λ} be a dense subset in X_{λ} such that $|D_{\lambda}| = \Xi(X_{\lambda}) \leq \mathfrak{m}$. If α_0 is the least ordinal number with corresponding cardinal number \mathfrak{m} , then each set D_{λ} can be so well ordered that

$$D_{\lambda} = \left\{ p_{\lambda}^{1}, p_{\lambda}^{2}, p_{\lambda}^{3}, \cdots, p_{\lambda}^{\alpha}, \cdots \right\}, \qquad \alpha < \alpha_{0}.$$

If $|D_{\lambda}| < \mathfrak{m}$, then the elements p_{λ}^{α} may be all taken identical from a certain point on. Of course, if $|D_{\lambda}| = \mathfrak{m}$, no repetitions need occur.

Let $\{\Lambda_1, \dots, \Lambda_n\}$ be an arbitrary family of disjoint sets in \mathcal{B} , and let $\{\alpha_1, \dots, \alpha_n\}$ be arbitrary ordinal numbers all less than α_0 . Let $x(\Lambda_1, \dots, \Lambda_n; \alpha_1, \dots, \alpha_n) = \{r_\lambda\}$ be the point in $\mathfrak{P}_{\lambda \in \Lambda} X_{\lambda}$ such that $r_{\lambda} = p_{\lambda}^{\alpha_1}$ for all $\lambda \in \Lambda_i$, $i=1, 2, 3, \dots, n$, and $r_{\lambda} = q_{\lambda}^0$ for $\lambda \in \Lambda \cap (\sum_{i=1}^{n} \Lambda_i)'$. Let W be the set of all points $x(\Lambda_1, \dots, \Lambda_n;$ $\alpha_1, \dots, \alpha_n)$ as $\{\Lambda_1, \dots, \Lambda_n\}$ and $\{\alpha_1, \dots, \alpha_n\}$ assume all possible values. It is clear that $|W| = \sum_{n=1}^{\infty} \mathfrak{m}^n \cdot \mathfrak{m}^n = \aleph_0 \cdot \mathfrak{m} = \mathfrak{m}$. Furthermore, W is dense in $\mathfrak{P}_{\lambda \in \Lambda} X_{\lambda}$. Let G be an arbitrary non-void open set in $\mathfrak{P}_{\lambda \in \Lambda} X_{\lambda}$. By the definition of open sets and neighborhoods in a Cartesian product (see, for example, [2, pp. 829-830]), there exist a finite subset $\{\lambda_1, \dots, \lambda_m\}$ of Λ and sets $U_{\lambda_1} \dots, U_{\lambda_m}$, where U_{λ_i} is an open set in X_{λ_i} , with the property that G contains all points $\{s_{\lambda}\}$

642

of $\mathfrak{P}_{\lambda \subseteq \Lambda} X_{\lambda}$ such that $s_{\lambda_i} \in U_{\lambda_i}$ for $i = 1, 2, 3, \dots, m$. The sets D_{λ} being dense in the spaces X_{λ} , there is a point $p_{\lambda_i} \alpha_i \in D_{\lambda_i}$ such that $p_{\lambda_i} \alpha_i \in U_{\lambda_i}$ $(i = 1, 2, 3, \dots, m)$. Since Λ is a Hausdorff space under the topology defined by \mathcal{B} , there are sets $\Lambda_1, \dots, \Lambda_m$ in \mathcal{B} such that $\Lambda_i \cap \Lambda_j = 0$ for $i \neq j$ and such that $\lambda_i \in \Lambda_i$ for all $i = 1, 2, 3, \dots, m$. It is obvious that the point $x(\Lambda_1, \dots, \Lambda_m; \alpha_1, \dots, \alpha_m)$ is in the set $W \cap G$. Having a nonvoid intersection with an arbitrary nonvoid open set in $\mathfrak{P}_{\lambda \in \Lambda} X_{\lambda}$, W is dense in $\mathfrak{P}_{\lambda \in \Lambda} X_{\lambda}$.

It follows from the definition of $\Xi(\mathfrak{P}_{\lambda \in \Lambda} X_{\lambda})$ and the equality $|W| = \mathfrak{m}$ that $\Xi(\mathfrak{P}_{\lambda \in \Lambda} X_{\lambda}) \leq \mathfrak{m}$. On the other hand, we have

$$(3) \qquad \qquad \left| \mathfrak{P}_{\lambda \leftarrow \Lambda} X_{\lambda} \right| \ge \mathfrak{m}^{|\Lambda|} = 2^{2^{\mathfrak{m}}}$$

Hence, by virtue of the inequality (1), it follows that

(4)
$$| \mathfrak{P}_{\lambda \in \Lambda} X_{\lambda} | = 2^{2^n}$$

and

(5)
$$\Xi(\mathfrak{P}_{\lambda \subset \Lambda} X_{\lambda}) = \mathfrak{m}.$$

This completes the proof.

For a result similar to this, see [6].

The foregoing theorem, applied to various well known spaces, yields curious results.

COROLLARY 1. The space of all real-valued functions of a real variable with the Cartesian product topology contains a countable dense subset.

COROLLARY 2. The space of all characteristic functions defined on a set of cardinal number 2^{\aleph_0} contains a countable dense subset under the Cartesian product topology.

Bibliography

1. P. Alexandroff and H. Hopf, Topologie, vol. 1, Springer, Berlin, 1935.

2. Eduard Čech, On bicompact spaces, Ann. of Math. vol. 38 (1937) pp. 823-844.

3. Edwin Hewitt, A problem of set-theoretic topology, Duke Math. J. vol. 10 (1943) pp. 309-333.

4. Bedřich Pospíšil, Sur la puissance d'un espace contenant une partie dense de puissance donnée, Časopis pro pěstování Matematiky a Fysiky vol. 67 (1937–1938) pp. 89–96.

5. ——, Remark on bicompact spaces, Ann. of Math. vol. 38 (1937) pp. 845-846.

6. E. S. Pondiczery, *Power problems in abstract spaces*, Duke Math. J. vol. 11 (1944) pp. 835-837.

The Institute for Advanced Study and Princeton University

1946]