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A REMARK ON DENSITY CHARACTERS 

EDWIN HEWITT1 

Let X be an arbitrary topological space satisfying the TVseparation 
axiom [l, Chap. 1, §4, p. 58].2 We recall the following definition 
[3, p. 329]. 

DEFINITION 1. The least cardinal number of a dense subset of the 
space X is said to be the density character of X. It is denoted by the 
symbol %{X). 

We denote the cardinal number of a set A by | A | . 
Pospisil has pointed out [4] that if X is a Hausdorff space, then 

(1) | X | g 2 2 S W . 

This inequality is easily established. Let D be a dense subset of the 
Hausdorff space X such that \D\ =S(-X'). For an arbitrary point 
pÇ^X and an arbitrary complete neighborhood system Vp a t p, let 
Vp be the family of all sets UC\D, where U^VP. Thus to every point 
of X, a certain family of subsets of D is assigned. Since X is a Haus
dorff space, VpT^Vq whenever p j*£q, and the correspondence assigning 
each point p to the family <DP is one-to-one. Since X is in one-to-one 
correspondence with a sub-hierarchy of the hierarchy of all families 
of subsets of D, the inequality (1) follows. 

I t may be remarked in passing that the inequality (1) does not 
obtain for all TYspaces. Let m be a cardinal number greater than 2C, 
where c = 2^o. Let Z be a TVspace of cardinal number m and with 
the property that the only closed proper subsets of Z are finite or 
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void. Then it is obvious that S(Z) =No, and that (1) does not obtain 
for the space Z. 

For some Hausdorff spaces, the equality 

(2) | X | = 22S(Z) 

obtains. Pospisil [4] has constructed a large family of such Haus
dorff spaces, and has shown [5] that the Stone-Cech fi for any discrete 
infinite space satisfies it as well. I t is the purpose of this note to 
exhibit another class of Hausdorff spaces for which (2) holds. 

THEOREM. Let A be an index class such that | A| = 2m where m is an 
infinite cardinal number. Let {Zx}x£A be a family of Hausdorff 
spaces such that \X\\^2 and lS(X\)^m for all XGA. Then 
| ^XGAXXI =2 2 m and S ( ^ X G A X X ) = m. 

PROOF. We first consider the set A as a topological space itself. 
Clearly, it may be put into one-to-one correspondence with the 
Cartesian product fy^ MA^ where each A^ is a Hausdorff space con
taining exactly two points and the index class M has cardinal num
ber m. As is well known, this Cartesian product is a bicompact 
Hausdorff space with cardinal number 2m and a basis of open sets 
with cardinal number m. We may consequently regard A as being a 
Hausdorff space with a basis 43 of open sets such that | © | = m. 

Let y°= {q\°} be a fixed point in the space P\Ç.AX\. Let D\ be a 
dense subset in X\ such that \D\\ = S(Xx) â m . If ao is the least 
ordinal number with corresponding cardinal number m, then each 
set D\ can be so well ordered that 

#x == { h f P^ P*> ' ' ' » fa> ' ' ' } » a < <*o. 
If | D\\ <m, then the elements p\a may be all taken identical from a 
certain point on. Of course, if |Z>x| =nx, no repetitions need occur. 

Let {Ai, • • • , An} be an arbitrary family of disjoint sets in <B, 
and let {ai, • • • , an} be arbitrary ordinal numbers all less than ao. 
Let #(Ai, • • • , Aw; ai, • • • , an) = {r\} be the point in ^XGA-^X such 
that r\=p\a* for all XEA t, i = l, 2, 3, • • • , n, and r\ = q\° for 
XGAnC^^xAi ) 7 . Let W be the set of all points #(Ai, • • • , An; 
oil, • • • , an) as {Ai, • • • , An} and {ai, • • • , « » } assume all possible 
values. I t is clear that | W\ = X ) n - i ^ n , ^ n = ^ o * î n = m. Furthermore, 
W is dense in ^ G A ^ X . Let G be an arbitrary non-void open set in 
sPxeA-Xx. By the definition of open sets and neighborhoods in a 
Cartesian product (see, for example, [2, pp. 829-830]), there exist a 
finite subset {Xi, • • • , X«} of A and sets U^ • • • , U\m, where U\t is 
an open set in X\., with the property that G contains all points {s\} 
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of $xe \X\ such that SxtE U\{ for i = 1, 2, 3, • • • , m. The sets D\ being 
dense in the spaces X\, there is a point pxfiÇzD^ such that £x/*»£ £/\t. 
(i = 1, 2, 3, • • • , m). Since A is a Hausdorff space under the topology 
defined by <B, there are sets Ai, • • • , Am in £ such that A*nA,- = 0 
for ijéj and such that X»£A; for all i = l, 2, 3, • • • , m. I t is obvious 
that the point #(Ai, • • • , Am; ah • • • , am) is in the set WC\G. Having 
a nonvoid intersection with an arbitrary nonvoid open set in 
$XGA.XX, Wis dense in $XGAXX . 

I t follows from the definition of EC^XEA-XTX) and the equality 
I W\ = m that S(^xeA^x) ^ m . On the other hand, we have 

(3) hPxGAXx| è m W = 2'm. 

Hence, by virtue of the inequality (1), it follows that 

(4) l ^ x e A X x l - 2 * " 

and 

(5) E(3$XGAXX) = m. 

This completes the proof. 
For a result similar to this, see [6]. 
The foregoing theorem, applied to various well known spaces, 

yields curious results. 

COROLLARY 1. The space of all real-valued f unctions of a real variable 
with the Cartesian product topology contains a countable dense subset. 

COROLLARY 2. The space of all characteristic functions defined on a 
set of cardinal number 2**o contains a countable dense subset under the 
Cartesian product topology. 
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