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The theory of partitions contains a number of theorems which as­
sert tha t the number of partitions of a given number into parts sub­
jected to a certain restriction is the same as the number of partitions 
restricted in some other way. A common type of restricted partition 
is one in which all parts are distinct. We have for example the famous 
theorem of Euler1 (1748): 

EXILER*s THEOREM. The number of partitions of n into distinct parts 
is the same as the number of partitions of n into odd parts. 

The notion of distinctness of parts may be altered in two directions. 
One may relax it to some extent and admit partitions in which no 
part is repeated more than a given number of times. In this case we 
have the beautiful theorem of Glaisher2 (1883). 

GLAISHER'S THEOREM. The number of partitions of n in which no 
part is repeated more than r — 1 times is the same as the number of parti­
tions of n into parts not divisible by r. 

This theorem obviously becomes Euler's theorem when r = 2. 
On the other hand the notion of distinctness may be further re­

stricted so as to include only those partitions in which the parts 
differ by d or more. For d = 0, we have completely unrestricted parti­
tions. For d = 2 we have a celebrated and difficult theorem discovered 
independently by Rogers3 (1894), Schur4 (1917) and Ramanujan6 

(1919). 

ROGERS' THEOREM. The number of partitions of n into parts differing 
by 2 or more is the same as the number of partitions of n into parts taken 
from the set 1, 4, 6, 9, 11, 14, 16, • • • , (5É + 1, 4), • • • . 

Attempting to go further in this direction, Schur6 later (1926) 
proved the following theorem: 
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1 L. Euler, Introductio analysin infinitorum, vol. 1, Lausanne, 1748, pp. 253-275. 
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495. See also W. Gleissberg, Math. Zeit. vol. 28 (1928) pp. 372-382. 
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SCHUR'S THEOREM. The number of partitions of n into parts which 
differ by 3 or more, and such that parts divisible by 3 differ by at least 6, 
is the same as the number of partitions of n into parts taken from the set 
1, 7, 13, 19, 25, 31, 37, • • • , (6* + l ) , 

The above theorems have corresponding analytical formulations. 
If we denote by q<i(n) the number of partitions of n into parts differing 
by d or more, then Euler's and Rogers' theorems can be written : 

(i) 

and 

(2) 

to to (1 - »)(1 - *2) • • • (1 - *•) 

-nu-*2-1)-1=na + *') 

Iï8(»)*"= Z 
nr0 (i - *)(i - *2) • • • (i - *•> 

00 

= n (i - «8H"i)-i(i - &1*4)-1-

As a matter of fact, (1) and (2) include rather more than is stated in 
the theorems, namely the facts that qi(n) and q*(n) are generated by 
the sums over s. They suggest also the well known7 case due to Euler 
in which d = 0, so that qo(n) = £(tt), the number of unrestricted parti­
tions of n: 

(3) £p(n)z* - £ ~ - - Ô (1 - «T1-
n-0 ,-0 (1 ~ *)(1 ~ *2) • • • (1 ~ X9) v«l 

The first parts of (1), (2) and (3) are special cases of a general gen­
erating identity 

oo oo %8+ds («—1)/2 

(4) £ qd(n)** - E - - -
n-0 .=0 (1 - * ) (1 ~ CO2) • • • (1 - X8) 

which is proved in Theorem 1. As for the products in (1), (2), and 
(3), we show in Theorems 2 and 3 that no further examples exist ; 
tha t is, tha t neither of the identities 

00 

£ ?*(»)*•- 1 1 ( 1 - a"")-1 (d^ 0,1,2), 

7 See for instance Hardy and Wright, Introduction to the theory of numbers, Oxford, 
1938, chap. 19, where also can be found proofs of Euler's and Rogers' theorems. 
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00 

£ qd(n)x« - I I (1 + *av) (d ̂  1) 
v - l 

can hold, no matter what set of distinct a's is chosen. In particular 
this means that no more theorems like those of Euler and Rogers are 
possible. In commenting on (2), P. A. MacMahon8 points out that 
q$[n) is also the number of partitions of n in which each part is at 
least equal to the number of parts. For the general d there exists a 
corresponding second interpretation of q<i(n). If d is even, qd(n) is 
the number of partitions of n into parts greater than (s — l)d/2, where 
5 is the number of parts. For d odd, qa(n) is the number of partitions 
of 2n into parts greater than l+(s — l)d and having the same parity 
as s — 1 . The case d = 2 is certainly the most elegant one. However 
for d>0 such sets of parts depend on s and so such partitions are 
not of the kinds considered in Theorems 2 and 3. 

THEOREM 1. Let q<i(n) denote the number of partitions of n into parts 
differing by d or more; then 

00 00 %8+ds(8—l)/2 

Sqdin)xn " S ( i -*)( i -*>) . - -a-*-) • 
PROOF. The following graphical proof may be given. Any partition 

of the sort enumerated by q<i(n) may be represented graphically by 
a series of rows of dots or "nodes," each row representing a part. Thus 
the following figure represents the case of the partition 15 + 10 + 5 + 2 
of 32 into parts differing by three or more. 

• • • 

A line passing just below the last node in the first column having a 
slope of l/d divides the graph into a triangle or "head" and an ir­
regular "tail." Graphs of this kind may be classified by the number 
of their rows or parts. I t is clear that the number of nodes in the 
head of a graph of s rows is the polygonal number 

s + d(s-l) + d(s-2)-{ + d = 5 + d(s - l)s/2 

of order d + 2. The n — [s+ds(s — l)/2] nodes in the tail may be trans­
lated to the right so as to form a "regular" graph which, when read 
by columns, gives a partition of n— [s+ds(s — l)/2] into parts not 

$ P. A. MacMahon, Combinatorial analysis, vol. 2, Cambridge, 1916. 
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exceeding s. Conversely, one may start with a graph of such a parti­
tion and, by translating the rth row (r — l)d spaces to the left for 
r = 1, 2, • • • , s and affixing the head of s rows, produce a graph of a 
partition of n into parts differing by d or more. Hence we may write 

00 

(5) qd(n) = £ P»(n ~ * - ds($ - l)/2) 

where p8(tn) denotes the number of partitions of m into parts not 
greater than sy po(m)~0 for m>0t p8(0)~l. If we define p8(m) to 
be zero for m < 0 we have, as is well known,7 the generating function 

00 J 

(6) £ P*(m)xm » 
(1 - *)(1 - x2) • • • (1 - *•) 

Multiplying (5) by xn and summing over n we have, in view of (6)» 

00 00 00 

2 ?<*(»)*" - X) *•+*<-»/» J 2 #.(» - * - ds(s - l)/2)«—•-*<•-»'* 
n—0 «—0 n«*0 

oo ^*+d*(«-l)/2 

" h a - *)(i-**).-.a-o' 
which proves the theorem. 

We now proceed to prove two nonexistence theorems. 

THEOREM 2. The number q<i(n) of partitions of n into parts differing 
by d or more is not equal to the number of partitions of n into parts taken 
from any set S of integers whatsoever, except when d = 0, 1, or 2. 

REMARKS. The exceptional case d = 0 is trivial since S is in this case 
the set of all integers. For d = 1, the set S may be taken to be the set 
of all odd integers, giving us Euler's theorem. For d = 2 the set S con­
sists of all numbers of the form 5# + l, 4 (# = 0, 1, 2, • • • ), giving us 
Rogers' theorem. Hence we may suppose that dèz3 in what follows. 

PROOF. Suppose that the theorem is false and that there exists such 
a set S of integers ai <a% <a 3 < • • • for d à 3 ; then by Theorem 1 we 
would have 

co co %8+dê(ê—1)/2 

II (1 - a"')-1 - £ 

(7) 

tZ (1 - *)(1 - *2) • • • (1 - «•) 

1 xd+i 

I - x (1 - *)(1 - x2) 

xsd+z 

+ (1 - *)(1 - *2)(1 - Xs) 
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Therefore ax = 1. Multiplying (7) by 1 —x we have 

oo xd+2 #8<H"3 

,»2 I — X2 (1 — X2)(l ~ XZ) 

Hence a2=d + 2. Multiplying (8) by (I—***2) we have 

oo X
d+2 /ç2d+4 

n d - *»rx - 1 - *i+i + -—- -—-2 
„„a 1 — * a 1 — x2 

(9) 
xZd+Z 

(1 - X2)(l - X*) 

If d is odd the coefficient of x2d+i on the right of (9) is seen to be — 1. 
This contradicts the fact that the product on the left, when expanded 
in powers of x, has non-negative coefficients. Hence d must be even. 
In this case the right-hand member of (9) simplifies so that we have 

n (i — *«*)-* = i + *d + 4+xd +*+• • • + * 2 d + 2 +X Z M 

do) *-3 

+ xZM + xZM + • • • . 
Hence a 3 = d + 4 , and since av+afi>2az = 2d+S we can conclude tha t 
a 4 = ^ + 6 , a 6 = d + 8 , • • , ad/2+2 = 2d+2 . Multiplying both sides of 
(10) by the corresponding factors we have 

d+2 

n (i — x»)-1 - n (i - *d+x)(i + xd+*+**"+••• 
(11) *«3+d/2 X»4 

+ X2d+* + xzd+z + xzd+5 + xzd+* _|_ . . . y 
We now consider the coefficient of x2d+s on both sides of (11). Since d 
is even, 3d+3>*2d+8 and d e 4 , so that 2d+&<3d+5. Therefore the 
coefficient of x2d+s on the right of (11) is — 1 . As before this contra­
dicts the fact that the coefficients on the left are non-negative. Hence 
we have the theorem. 

THEOREM 3. The number q<i(n) of partitions of n into parts differing 
by d or more is not equal to the number of partitions of n into distinct 
parts taken from any set S of integers whatsoever, except when d = l. 

REMARKS. The theorem for d = 0 is obvious since the first men­
tioned partitions are, in this case, unrestricted and hence more nu­
merous than any other kind of partition. For d = l, the exception is 
of course necessary but trivial since in this case 5 may be taken as 
the set of all integers. Hence we are interested in proving the theo­
rem for d^2. 



1946] TWO NONEXISTENCE THEOREMS ON PARTITIONS 543 

PROOF. Suppose the theorem to be false and let S exist consisting 
of the integers ai<a%<az< • • • . Then comparing the generating 
functions of the two kinds of partitions described in the theorem we 
have, by Theorem 1, 

1 xd+2 

n (i + v) = - — + £.1 1 - * (l - *)(1 - x") 

%Zd+Z 

(1 - *)(1 - *2)(1 - x*) 

Therefore ai = l. Multiplying both sides of (12) by 1—x we have 

(i3) (i - x*m (i + *>) - 1 + - — j + - — + . . . . 
„„2 1 — X2 (1 — X2)(l — ff3) 

Let X be defined by 

(14) 2X~1 <d + 2£2\ 

Since the coefficients of xk on the right of (13) vanish for 0 <k <d+2 
we must have #2 = 2, a3 = 22, a4 = 23, • • • , a\~2x~~1. Hence (13) may 
be written 

(15) ( i - * x ) I I ( l + * * ) - ! + - ; + - — - + • • • . 
»x 1 - x2 (1 - a2)(l - a3) 

We now separate two cases: 
Case l. dis even. Let us compare the coefficient of x2* on both sides 

of (15). Since 3d+3 >2X by (14), the coefficient of x* on the right 
of (15) is clearly + 1 . Since the sum of any two a's occurring in (15) 
is greater than 2ax = 2 \ the coefficient of x2X on the left of (15) is 
either 0 or — 1, according as one of the av has the value 2X or not. 
In either case a contradiction exists disposing of Case 1. 

Case 2. d is odd and greater than or equal to 3. In this case the 
powers of x occurring on the right of (15) are the odd powers from 
xd+2 to xzd+2. Hence x2 does not appear on the right. Since the sum 
of two a's on the left exceeds 2 \ one of these a's must be 2X. Setting 
the corresponding factor 1 +# 2 outside the product sign and develop­
ing the rest in powers of x we have 

(i - z2X+1)(i + E *•" + E **** + • • •) 
(16) 
V 7 %d+2 %Zd+Z 

= 1 H ~\ H . 
1 - x2 (1 - * 2 ) (1 - x*) 
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Comparing the early powers of x we see that a\+i=d+2t 

öx+2=d+4, • • • , so that a„+aM^ax+i+a\+2*z2d+6. Hence the a's 
in (16) are the successive odd numbers beginning with d+2 and ex­
tending at least as far as 2d+5 since this latter number is less than 
2X+1 on the one hand (in view of (14)) and 3d+3 on the other, since 
d<z3. We now consider the coefficient of xdd+* on both sides of (16). 
Since 3d+6 is odd, it is not the sum of two a's, since the a's are odd, 
nor is 3d+6 the sum of three or more a's, since such a sum would 
exceed 3ax+i = 3d+6. Hence any contribution to the coefficient of 
xzd+a o n the left of (16) must arise from the multiplication of (1 — x*x+1) 
by y^xav and so is either ± 1 or 0. However it is clear that the coeffi­
cient of xzd+* on the right of (16) is precisely 2. This contradiction 
proves the theorem. 
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