A NOTE ON POINTWISE NONWANDERING
TRANSFORMATIONS

W. H. GOTTSCHALK

Let X be a Ti-space and let f be a continuous transformation of X
into X In the terminology of G. D. Birkhoff [1, p. 191],! a point x
of X is said to be nonwandering under f provided that to each neigh-
borhood U of x there correspond infinitely many positive integers »
for which UNf*(U) = & ; also, the transformation f is said to be point-
wise nonwandering provided that each point of X is nonwandering
under f.

THEOREM 1. If f is pointwise nonwandering, then so also is f* for
every positive integer k.

Proor. (We make use of a technique employed by Erdés and Stone
[2, pp. 126-127].) Suppose % is a positive integer, x0EX, and U, is
a neighborhood (= open neighborhood) of xy. Let #; be a positive in-
teger for which UyN\f*1(U,) # &. Choose x1E U, so that f(x:) € U,
and a neighborhood U of x; so that Uy C U, and f»(Uy) C U,. Let 7y
be a positive integer for which UiM\f*2(U;) # &. Choose x, & U so that
fM(x) EUL and a neighborhood U, of x, so that U,CU; and
f(Us) C Ur. Continuing this process, we obtain a sequence {7} of
positive integers and a sequence { U:} of neighborhoods so that
UiCUiaq and f*(U;)CU;a (3=1, 2, - - ). Let r; denote the in-
teger for which 1 =r;<k and n;=7; mod k. Infinitely many of the 7;
are equal to some integer, say . We may suppose r;=r, U;C Ui_; and
i(U;) CUsa (=1, 2, - - -). Choose an arbitrary positive integer p.
Define # =) ?*:n;. Now n=0 mod k. Choose x & Up. Clearly, xE U,
and f*(x) € U,. Hence, UyN\f*(U,) # &. Since # = p, the proof is com-
pleted.

LemMmA 1. If f(X) =X is a homeomorphism, if A and B are closed
connected sets for which AAVB=X, ANB=x&X and ANf(A)#J
#= BMf(B), and if x is nonwandering, then x is fixed.

Proor. Assume x is not fixed. We may suppose that f(x) EB. Now
x&f1(4) for in the contrary case f(x) EANB=x. The set f(4) is
connected and intersects both 4 and B. Hence, x &f(4). There exists
a neighborhood U of x such that UNf1(4)=& and such that
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UCf(4) for if the latter condition could not be satisfied, x Ef(B)
and f(x) =f(ANB) =f(4)Nf(B)Dx. Now ACf(4) since otherwise
ANf(B) # & = BNf(B) whence x €f(B) and as before f(x) =x. Thus
ACf"(A) for each integer n =1. We conclude that for each integer
n1,f(U)Nf(A) = and,since also UCf(4) Cf(4), UNf(U)
= . This contradicts the hypothesis that x is nonwandering.

THEOREM 2. If X is connected and if f(X)=X is a pointwise non-
wandering homeomorphism, then each cut point of X is periodic.

ProoF. Let x be a cut point of X. There exist closed connected sets
A and B such that AUB =X, ANB=x and 4 x5 B. The proof is
split into two exhaustive cases. Case I: Either ANfi(4)= & (=1,
2, +),or BOfi(B)= & (¢=1,2, -+ ). Case II: There exist posi-
tive integers m and # such that ANf"(4) =& and BNf*(B)=.

Suppose Case I occurs. We may assume that ANfi(4)= & (i=1,
2, - -+ ). Since B—x is open, there exists a positive integer & such
that BNf*(B) = &. By Theorem 1, x is nonwandering under f* and
by Lemma 1, x is therefore fixed under f%.

Suppose Case II occurs. Now BDf"(4) and A Df*(B). Hence
(B)Dfmtr(4) and f~(4) Df~*+=(B). It follows that 4 Df"*+"(4) and
BDfm*t*(B). Thus, fr*+(x) =f~+*(4MNB) =fr+r(4)N\fr+(B)CANB

=x. (Actually Case 1I can never occur.)

CoROLLARY 1. If X is a compact connected semi-locally connected
metric space and if f(X) =X is a pointwise nonwandering homeomor-
phism, then every cyclic element of X which is not an end point is peri-
odic.

A theorem [3, p. 242] of Schweigert’s shows that Corollary 1 per-
mits a weakening of hypothesis from pointwise recurrence (= “point-
wise almost periodicity” in the sense of Ayres) to pointwise nonwan-
dering in certain theorems of Ayres and Whyburn on the behavior of
cyclic elements under a homeomorphism. The reader is referred to
Schweigert’s paper [3] for complete references to the work of Ayres
and Whyburn.
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