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If P is an (abstract) w-dimensional projective space, then we de­
fine a polarity in P as a correspondence p associating with every point 
Q in P a hyperplane Qp and with every hyperplane h in P a point hp 

in such a way that : 
(i) 0 = Qp2 for every point () and A = Ap2 for every hyperplane h. 
(ii) The point Q is on the hyperplane h if, and only if, the hyper­

plane Qp passes through the point hp. 
I t is an immediate consequence of (i) that polarities are 1:1 corre­

spondences. 
We shall term p a null-polarity if the polarity p has the additional 

property that : 
(iii) Every point Q is on the corresponding hyperplane Qp, and 

consequently every hyperplane h passes through the corresponding 
point hp. 

Extending a result of Veblen and Young, R. Brauer1 has shown that 
the existence of a null-polarity in P implies that the number n of 
dimensions of P is odd, and he has connected the null-polarities with 
the so-called null-systems, provided P is the w-dimensional projective 
space over a commutative field of coordinates. I t is the object of the 
present note to show that this last hypothesis may be omitted ; more 
precisely we are going to show that if the dimension of P is greater 
than 1, then the existence of a null polarity is equivalent to the fact 
that P is of odd dimension and is a projective space over a commuta­
tive field of coordinates. 

If P is a projective space of dimension 1, then the hyperplanes 
are points too. The identity transformation on the points of the line P 
is therefore the null-polarity of P . For this reason we shall assume 
throughout the remainder of this note that P be of dimension greater 
than 1. 

The case of a projective plane P has to be treated separately from 
the others, since the Theorem of Desargues need not hold true in a 
projective plane, though it is true for all the higher-dimensional pro­
jective spaces. 

A projective plane is a system of points and lines such that any 
two different lines meet in one and only one point, any two different 
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1 R. Brauer, A characterization of null systems in projective space, Bull. Amer. 
Math. Soc. vol. 42 (1936) pp. 247-254. 
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points determine one and only one line (on which they are both situ­
ated) and such that every line carries a t least three points (every 
point is on at least three lines). 

LEMMA. If p is a polarity of the projective plane P , if Q and R are 
different points in P such that Q is on the line Qp and R is on the line Rp, 
then Q is not on Rp (nor is R on Qp). 

PROOF. If Q were on Rp, then Rp would be the uniquely determined 
line through the two different points R and Q, since R is on Rp. 
Furthermore R would be on Qp ; and it would follow likewise that Qp 

is the uniquely determined line through R and Q. Thus Rp = Qp and 
hence R = Q, a contradiction proving our contention. 

COROLLARY. There does not exist a null-polarity in a projective plane. 

This is an immediate consequence of the lemma. 
Because of the corollary we shall assume throughout the remainder 

of this note that the dimension of the projective space P is a t least 3. 
In this case P is the w-dimensional projective space over an essentially 
uniquely determined, not necessarily commutative, field F. 

If F is any field (commutative or not), and if n is an integer not less 
than 3, then we denote by (Fy n) an additively written abelian group, 
admitting the elements in F as left-multipliers, and having the rank 
n + 1 over F. The w-dimensional projective space over F is then es­
sentially the same as the partially ordered set P(F, n) of all the inad­
missible subgroups of (Fy n), the points being of the form Fx with 
XT^O, and the hyperplanes being of rank n. 

Every polarity p of P(F, n) may, as is well known,2 be represented 
in the following form : There exist an anti-automorphism a of F (satis­
fying a 2 = l ) and an F-valued function f(x, y), for x, y in (F, n), 
satisfying :3 

f(x, y) = 0 if, and only if, f(y, #) = 0; 
f(ux+vy, z)=uf(x, z)+vf(y> z),f(z, ux+vy) =f(z, x)ua+f(z, y)va. 
The point Fx is on the hyperplane (Fy)p if, and only if, ƒ(#, y) = 0. 
Assume now that the polarity p be a null-polarity. This is equiva­

lent to saying ƒ (x, x) = 0 for every x in (F, n). If #5^0, then there exists 
2 A proof of this fact may be effected in essentially the same fashion as done by 

R. Brauer, op. cit. pp. 251, 252, in the case of commutative F; for a detailed proof of 
a more comprehensive fact see R. Baer, A unified theory of projective spaces and finite 
abelian groups, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 315-317. 

8 We state here only such properties of the function ƒ (x, y) as will be needed later. 
Further properties have to be imposed to assure that, conversely, every such ƒ(#, y) 
defines a polarity. Note in particular that no use has been made of the involutorial 
character of a. 
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a t least one y such that ƒ (x, y)?é0, since otherwise (Fx)p would be 
the whole space instead of only a hyperplane. Let x, y be any pair of 
elements such that ƒ (x, 3 0 ^ 0 . If t is some element in F, then we find 

0 = f{x + ty, % + ty) = f(x, x) + f(x, y)ta + tf(y, x) + tf(y, y)ta 

= ƒ(*, y)t« + tf(y, x). 

Substituting t = l, we obtain ƒ(x, y)+f(y, x) = 0; and thus the above 
equation reduces to 0=f(x, y)ta — tf(x, y). Since f(x, y)5*0, this im­
plies ta—f{x, y)~ltf{x, y) for every / in F, proving that the anti-auto­
morphism a of F is an inner automorphism of F. Hence F is commuta­
tive and a = l . Combining this with the fact that ƒ(x, y)=0 if, and 
only if, ƒ(y, x) = 0, we see that ƒ(#, 3>) is actually a skew-symmetric 
bilinear form. 

I t is well known4 tha t there exists to every skew-symmetric, F-
valued bilinear form f(x, y) over (F, n) a basis x{\), • • • , x(m), 
y(l), • • • , y{m), z{\), • • • , z{k) of (F, n), meeting the following re­
quirements: 

(a) 0 ^ m, 0 = *, 2w+£ = w+l; 

(b) ƒ(*(#, y(0) = 1 for 1 ^ j = m; 

ƒ(*(*)> *(i)) = f(y(*)t y(j)) = 0 for every i a n d ; ; 

(c) ƒ(*(*). *(ƒ)) = ƒ(?(*)» *(ƒ)) = ƒ(*(*)» «O")) = 0 for every i and j ; 

f(x(i), y{j)) = 0 for every i ^ j . 

This implies in particular ƒ (x, z{i)) = 0 for every x in (F, n) so that the 
hyperplane (Fz(i))p would contain every point of the space, an im­
possibility proving k = 0 and n~2m--l. Summarizing our results we 
obtain : 

If P is a projective space of dimension n, greater than 1, and if p is 
a null-polarity in P, then n = 2m — 1 for m a positive integer, P is the 
n-dimensional projective space over a commutative field F, and there 
exists a system of homogeneous coordinates in P such that the point 
F(xo, - • • ,x2m-i) is on the hyperplane [F(y0, • • • , y2m~i)]p if, and only if, 

m—1 

0 = ]T) (x2i+iy2i — y2i+i%2i)> 

Combining all our results one deduces without difficulty the fol­
lowing facts. 

4 See for instance C. C. MacDuffee, The theory of matrices, Ergebnisse der Mathe-
matik under ihrer Grenzgebiete, vol. 2, part 5, 1933, pp. 52, 53, Theorem 32.2. 
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THEOREM A. In an n-dimensional projective space there exists essen­
tially at most one null-polarity. 

THEOREM B. In the n-dimensional projective space P with Kn there 
exists a null-polarity if, and only if, n is odd and P is the projective 
space of dimension n over a commutative field. 
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