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Introduction. A rectilinear congruence in ordinary three-dimen­
sional Euclidean space may be defined by specifying the direction of 
a unique line at each point of a given surface. A union curve1 on the 
surface relative to a given congruence has the property that its oscu­
lating plane at each point of the curve contains the line of the congru­
ence through the point. I t is well known that the union curves relative 
to the congruence of normals to a surface are the geodesic curves on 
the surface. The principal aim of this paper is to generalize for union 
curves certain known results concerning geodesic curves. 

The analytical representation of the congruence in §1 is followed 
in §2 by the derivation of the differential equations of the union 
curves referred to an arbitrary system of coordinates on the surface. 
From the definition of the union curvature vector in §3, it is seen that 
a union curve on a surface may be defined as a curve for which the 
union curvature vector is a null vector at every point of the curve. 
Finally, there appears in §4 a geometric interpretation of the union 
curvature of a curve on a surface which agrees with the definition of 
geodesic curvature of the curve for the particular case of the congru­
ence of normals to the surface. 

The notation of Eisenhart2 will be employed for the most part, al­
though T^7 will be used here as the Christoffel symbol of the second 
kind. Greek indices will always take the range 1,2, and Latin indices 
the range 1, 2, 3. The summation convention of the tensor analysis 
will be observed. 

1. Analytical representation of the congruence. Let the surface 5 
be defined analytically with reference to an orthogonal cartesian sys­
tem of coordinates by 

(1) xi = xKu\W) (i = 1, 2, 3), 

where the functions x* and their partial derivatives to the second 
order are understood to be continuous at any point P on 5. Let the 
line I of the congruence at P have direction cosines given by 

(2) X** = \*(u\ u*), |\*\* = 1, 
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where the functions X* are continuous at P . If X* denote the direction 
cosines of the normal to S a t P , the direction cosines of I at P may be 
written in the form 

(3) \% = p°x,a + qX% ( 8 > 0 ) , 

where, for convenience, the notation of the covariant derivative x\a 

of xl with respect to the first fundamental tensor (gap—x^x*^) of S 
is used instead of dxi/dua. By virtue of the second of equations (2), 
there results 

(4) x Y m (p"x%,a + qX%){p^x%
s + qX) s g a ^ V + q = 1. 

If 0 is the angle between Z at P and the normal to S at P , it is seen 
from equation (3) tha t 

(5) cos 0 = X*X* = q} 

and from (4) tha t the magnitude of the vector with contravariant 
components pa is sin 0. I t may be noticed also that if C is any curve 
on 5 through P represented by ua = ua(s), where s denotes arc length, 
then the cosine of the angle (j> between / and the direction of the 
tangent to C a t P is given by 

i dx* ai % * dvfi « dtfi 
(6) cos <f> = X — = (p x,a + qX )x,p — = gapp — • 

ds ds ds 
2. Differential equations of the union curves. The osculating plane 

to the curve C: ua = ua(s) on S a t P has the determinantal equation 

(7) 8ijk(x - x) — — = 0, 
ds ds 

the xl being current coordinates. On writing 

<Ztf>' i ,* d2Xk
 k llT d2Xk ,« ,0 

ds ds2 duadw 

where the primes indicate differentiation with respect to s, and, in 
turn, the Gauss equations of the surface 5, namely, 

(9) ——— - TlfiX.y + da(iX , 
duadufi 

we see that equation (7) takes the form 

. . * 1 2 3 / * \ / I9 i \ / r fc i fa ft tJ6\ r\ 
(10) Oijk{X — X)(U Xtc)(p X,r + dapU U X ) = 0, 
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where p r, the components of the curvature vector3 of C at P , are given 
by 

(11) p SS W + To/SW W . 

If the osculating plane to C at P contains line /, the coordinates 
s*+/X*s#«+/(£'TtfJ7+gXO must satisfy equation (10) for all t. Thus, 
the condition 

(i2) O/»!, + «*VV.)(pT**T + <WW) - o 
must obtain. Use of the facts that ^ ? ^ 7 a ^ f T s 0 (because 7, or, r 
cannot all be different) and S^Xixf

t4rX
k^0t together with a change 

of umbral indices, allows equation (12) to take the form 

(13) (àijkX X,cX,r){p U dafiU U + QU p ) = 0 . 

I t is to be noticed here that da$ufauffi is the normal curvature Kn of 
the curve C with direction u,a (a = l, 2) on the surface 5. 

Summing on a and r in equation (13), and neglecting the nonzero 
determinant Slf^X^x^t we obtain 

(14) eOT(pffu'TKn + qu'op') « 0, 

where4 eu = 1, 621 = — 1, en = £22 = 0. 
Equation (14) is the differential equation of second order of the 

union curves on the surface S through any point P on S} the para­
metric curves being any whatever. Lane6 has given the differential 
equation of union curves on a metric surface for the case in which the 
lines of curvature on the surface are taken as parametric. 

From equation (14) one may conclude that if # = 0 (which means 
that / lies in the tangent plane to 5 at P ) , then the only union curves 
are those in the directions given by p1du2—p2du1 = 0 and by Kn 

^dapu'au'P = 0, the asymptotic directions. Suppose, henceforth, that 
#7^0, and let I9 be written for p*/q. Then, if a and r be interchanged 
in the second term of equation (14), the differential equation of the 
union curves on S through P becomes 

(15) *r*''(pT ~ KJ') = 0. 

If the components p r of the curvature vector of the curve are zero, 
the curve is a geodesic. From equation (15), it can be seen that the 

3 Eisenhart, loc. cit. p . 187. 
4 Eisenhart, loc. cit. p . 135. 
5 Lane, Projective differential geometry of curves and surfaces, University of Chicago 

Press, 1931, p . 240. 
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geodesies and union curves on a surface coincide in the three directions 
given by p2du1—p1du2 = 0 and the directions of the asymptotic curves on 
the surface. Moreover, it may be seen from equation (15) that if the 
congruence is normal to the surface (/°" = 0), the union curves are 
geodesic curves on S. 

3. Union curvature of a curve on a surface. Equation (IS) is a 
single differential equation of the second order. I t will be shown to be 
equivalent to a pair of differential equations of the second order. 

The curvature vector with components p r is orthogonal to the di­
rection u'a of C on S. Hence6 

(16) gappau'e » 0. 

If equation (16), multiplied by un, and equation (IS), multiplied by 
g2pu'fi, are subtracted, there results, by use of g^u^u'V — l, the first 
of the following differential equations of the union curves on S, 

V1 = P1 - Kngwu't-eJ'u'* = 0, 
U7) 

T?2 s p2 + Kigv&'t'eaJru'* « 0, 

and the second equation is obtained in a similar manner. The vector 
with components rja given by (17) lies in the tangent plane to S a t P. 
It may be called the union curvature vector of the curve C on S a t P. 
I t may be concluded from equations (17) that the union curvature 
vector is a zero vector at each point of a union curve. 

The geodesic curvature7 K0 of the curve C a t P is given by 

(18) K9 s corf*/*, 

where ea^—gll2ea^ Therefore, it appears appropriate to define the 
union curvature Ku of C a t P by 

(19) Ku m eapu' V , 

which may be written, by use of equations (16) and (17), in the form 

(20) Ku s € ( r Tw'V - KJr) = Kg- Kn€aru'H\ 

I t may be observed from equation (20) that the geodesic curvature 
along a union curve (Ku^0) is given by 

(21) Kg - KnUrU'9lT. 

From equation (IS) it is seen that the coordinate curves on the sur­
face are union curves if, and only if, the congruence is specified by 

6 Eisenhart, loc. cit. p. 171. 
7 Eisenhart, loc. cit. p. 187. 
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(22) I1 = Tlt/dtt, f = T\i/dn. 

For this particular congruence, the geodesic curvature of any union 
curve on 5 at P is given by 

/Tn r L \ 
(23) K0 = g1'* ( un u'2 ) dafiu'tt'*. 

\dn d22 I 
If Kav K02 denote the geodesic curvatures of the curves through P 
represented by du2~0y dul~0> it can be seen from equation (23) that 
the sum of the geodesic curvatures of the coordinate curves on a sur­
face is given by 

(24) Kn + KBi - g 1 / 2 [ rn (« 'V - r « ( « ' V ] . 

When the asymptotic curves are taken as parametric, the directions 
of Segre8 at the point P on the surface are given by T2

n{un)z — Y\2{u,2)z 

= 0. Hence, it can be concluded that the directions of Segre are those 
in which the geodesic curvatures of the asymptotic curves differ in sign. 
This may be compared with the result9 that the torsions of the asymp­
totic curves through any point differ in sign. 

4. Geometric interpretation of union curvature. The geodesic cur­
vature of a curve C a t P on the surface is the curvature of the curve 
obtained by projecting the curve C orthogonally onto the tangent 
plane to the surface at P . Let the curve C be projected onto the tan­
gent plane to the surface at P in the direction of the line / of the con­
gruence. I t will be shown that the curvature of the plane curve C' 
thus obtained is given by the expression in equation (20). 

Let the cylindrical surface of projection of curve C onto the tangent 
plane at P in the direction of line / at P be denoted by S'. If \/R is 
the normal curvature of C as a curve on Sr a t P , and a is the angle 
between the principal normal to C a t P and the normal to the plane 
of / and the tangent line to C a t P , then, by the theorem of Meusnier, 

(25) e/R = p"1 cos a, 

where e= ± 1, and 1/p is the curvature of C a t P . Further, if 1/r is 
the curvature of the curve C' a t P , and if j3 is the angle between the 
tangent plane to 5 at P and the plane through the tangent line to C' 
normal to the plane of / and this tangent line, then, again by the theo­
rem of Meusnier, 

8 Lane, loc. cit. p. 77; also Springer, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 901-
906. 

9 Eisenhart, loc. cit. p. 248. 
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(26) e/R = r~l cos j3. 

Therefore, by equations (25) and (26) 

(27) e/r = cos a/(p cos 0). 

Substitution of the analytical expressions for cos a and cos j3 into 
equation (27) yields, after some simplification, 

e/f = €rr«/r(pr - KJT), 

which is the union curvature Ku given in equation (20). Therefore, 
the union curvature of a curve C at a point P on a surface S relative to a 
given congruence is the curvature of the curve obtained by projecting C 
onto the tangent plane to S at P in the direction of the line I of the con­
gruence at P . 
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