
A PROOF OF A THEOREM ON COMMUTATIVE MATRICES 

PACO LAGERSTROM 

The following theorem is well known (see, for example, Wedder-
burn, Lectures on matrices, p. 106) : 

" If the matrix B commutes with every matrix that commutes with A, 
then B is a scalar polynomial of A." 

I t is thought, however, that the proof given below is simple enough 
to be of interest. The proof is based on the main theorem for abelian 
groups with a finite number of generators. The version of this theorem 
given in van der Waerden, Moderne Algebra, vol. 2, pp. 114 and 122, 
is especially well suited for our purpose. Let 2ft be a finite-dimensional 
vector space over a commutative field K. Let A be a fixed linear 
endomorphism of 2ft. All endomorphisms of the form P(A), where 
P(x) is a polynomial with coefficients in K, form a euclidean ring of 
operators on 2ft. "Admissible subgroups" (van der Waerden, Moderne 
Algebra, vol. 1, p. 145) with respect to this set of operators are those 
subspaces of 2ft which are invariant under A. The main theorem 
about the decomposition of abelian groups, as applied to 2ft, then 
reads : There exist a finite number of subspaces 2ft» and polynomials 
over K, P »•(#), such tha t : 

(la) 2ft is a direct sum of the 2ft». 
(lb) 2ftt is invariant under A. 
(lc) Each 2ft» is cyclic. This means that there exist elements 0» such 

that each element of 2ft» is of the form P(A)ei. 
(Id) Piix) generates the annihilating ideal of 2ft». 
(le) Pi+i(x) divides P»(#). 
I t follows that Pi(A) = 0 and that P{A) = 0 implies that Pi{x) di­

vides P(x). (In a terminology sometimes used P,(#) is the order of e% 
with respect to A and P\{x) is the minimal polynomial of A. Thus the 
order of e\ is the minimal polynomial of A. Conversely, once the exist­
ence of an element with this property has been demonstrated, the 
decomposition theorem is easily proved.) 

We denote by Ei the projection on 2ft», that is, the linear endomor­
phism uniquely defined by :£»ƒ=ƒ if ƒ is in 2ft»* and £»ƒ=() if ƒ is in 
2ft/, j^i. I t follows that ƒ is in 2ft» if and only if £»ƒ=ƒ. An endomor­
phism C which commutes with Ei leaves 2ft» invariant because if ƒ is 
in 2ft», then EiCf = CEif= Cf. Conversely, if all 2ft» are invariant un-
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der C, then CEi^EiC. Also, if E is the identity mapping, then 
E~2Ei. 

After these preliminaries we are ready to give a concise formulation 
and a proof of the theorem stated at the very beginning of this note : 

THEOREM 1. Let 2ft be a finite-dimensional vector space over a com­
mutative field K and A and B linear endomorphisms of 5DÎ such that B 
commutes with every endomorphism that commutes with A. Then there 
exists a polynomial Q(x) with coefficients in K such that B^"Q(A). 

Using the notation explained above we first prove a lemma: 

LEMMA. A polynomial Q(x) may be found satisfying the relation 
Bei~Q(A)ei {where as remarked above any element whose order is the 
minimal polynomial of A may be taken as ei). Q(x) also satisfies the rela­
tion BEi~Q(A)Ev 

PROOF. Since each 9ft» is invariant under A, each Ei commutes with 
A and hence with B. Thus each 9W* is also invariant under B, in 
particular Be\ is in 3Wi from which the existence of Q(x) follows by 
(lc). Now let ƒ be in 9fti. Then for some polynomial P(x), f**P{A)e\ 
andBElf^Bf^BP(A)e1^P(A)Bei^P(A)Q(A)ei^Q(A)f^Q(A)Eîf. 
If ƒ is in SW<, i V l , thenBEif^Q(A)Eif « 0 which concludes the proof 
of the lemma. 

In order to prove that the Q(x) defined in the lemma may be taken 
as the (J(#) of Theorem 1, we have to show that BEi~Q(A)Ei for 
any i. For this purpose we define a mapping M » by : 

(2a) MiR{A)e\~R(A)ei for any polynomial R(x). 
(2b) J l f ^ - O f o r / i n S K ^ j V l . 
(2c) M is a linear endomorphism of 3DÎ. 
Condition 2a defines a one-valued mapping because if R(A)e% 

~S(A)eu then R(x)-S(x) is divisible by Px(x) (by Id) and by P<(*) 
(by le) and hence R(A)ei=*S(A)ei. Evidently Mi commutes with A 
and hence with B. From this follows : Bd^BMiex = MiBei = MiQ(A)e\ 
*=Q(A)ei. Since Bei^Q{A)e^ we may prove as above that BEi 
-Q(A)Ei. 

The proof is now complete since B « 2J3E<« 2Q(A)Ei«= Q(A). 
The above proof suggests a generalization. Namely, in Theorem 1 

the vector space SO? and the ring of polynomials of A may be replaced 
by any abelian group with a commutative ring of operators for which 
the decomposition theorem is valid. I t can then be seen easily that 
the proof given in this note remains valid without essential changes. 
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