
NOTE ON CONVEX CURVES ON THE 
HYPERBOLIC PLANE 

L. A. SANTALÓ 

1. Introduction. In a previous note [5](1) we have obtained some 
properties referring to convex curves on the sphere. Following an 
analogous way our purpose is now to obtain the same properties for 
convex curves on a surface of constant negative curvature K = — 1, or, 
what is equivalent, for convex curves on the hyperbolic plane. 

In §§6 and 7 we consider the curves of constant breadth, for which 
we obtain the formula (7.3) which relates the length L and area F 
with the breadth a. 

For the curves which are not of constant breadth the formula (4.5), 
which contains (7.3) as a particular case, holds. But (4.5) is true only 
if we suppose that the curve has in all its points geodesic curvature 
Kg greater than one. 

2. Definitions. A closed curve C on a surface of constant negative 
curvature K = — 1 is said to be convex when it cannot be cut by any 
geodesic in more than two points, except that a complete arc of 
geodesic may belong to the curve. Any closed convex curve C has 
a finite length L and bounds a finite area F. In the following, unless 
otherwise specified, we shall suppose that C is composed of a finite 
number of arcs each with continuous geodesic curvature K0. 

Let co* be the exterior angles which these arcs form at the vertices 
of C. Then we have the Gauss-Bonnet formula [3, p. 191], 

(2.1) f K0ds+ X > < = 2ir+F. 
J c 

If a point 0 on C is taken as origin, any point A of C can be deter­
mined by the length of the arc OA = 5 or by the angle r defined by 

(2.2) T= ( * f<k+2>< 
J o « 

where X)»00* *s extended over all the vertices of C contained in the 
arc OA. 

Any geodesic with only one common point or with a complete arc 
in common with C is called a "geodesic of support" of C In each 
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point of C for which there exists a tangent geodesic the geodesic of 
support coincides with this. Any geodesic which passes through a 
vertex without crossing C is also a geodesic of support. To any 
geodesic of support of C corresponds a value of the angle r (2.2). 

Let g be a geodesic of support of C and let A be its point of support. 
Let g' be the orthogonal geodesic to g a t the point A and g% another 
geodesic of support of C which is also orthogonal to g'. The curve C 
will be contained between g and g\. If Ar is the point in which gi 
cuts g', we shall call breadth a of C corresponding to the point A the 
length of the arc AAf of geodesic g'. The breadth a is a function of 
the angle r or the arc 5 corresponding to the point A. 

3. Closed convex curves with K0>\ at any point. Let us suppose 
tha t C has K0 > 1 at any point. We shall call pseudospherical osculating 
circle of C a t the point A the limit of the geodesic circle determined 
by the points A, A\y A*ol Cwhen-4i, At—>A. 

If we suppose K0>1, the radius R of the pseudospherical osculating 
circle (which we shall call "radius of pseudospherical curvature") has 
a finite value and is related to the geodesic curvature KQ by 

(3.1) Kg = coth R. 

This equality is obtained by applying the Gauss-Bonnet formula to 
a geodesic circle and using the following formulas for its length and 
area: 

(3.2) L = 2TT sinh R, F = 2TT(COS1I R - 1). 

The center 0 of pseudospherical curvature is the limiting position 
of the point in which the orthogonal geodesic to C a t A (s) cuts the 
orthogonal geodesic at A (s+As) when As--»0. 

The condition *ca>l, which is equivalent to R< oo, will then be 
necessary and sufficient for two sufficiently close orthogonal geodesies 
to C to intersect each other. 

Before proceeding it is necessary that we prove the following 
lemma. 

LEMMA. Let gx and g<i be two geodesies which are orthogonal to the 
geodesic g. Let MN be an arc of the curve C with K0 > 1 at each point and 
which is tangent to gi and g% at the ends M, N respectively. We affirm 
that: on the arc MN there is only one point with the property that the 
orthogonal geodesic to C which passes through it is also orthogonal to g. 

We suppose the arc MN is composed of a finite number of arcs 
with continuous geodesic curvature, and a geodesic will be considered 
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orthogonal to MN at a corner if it is orthogonal to a geodesic of sup­
port through the corner. 

PROOF. The angle which the geodesies of support of the arc MN 
form with the orthogonal geodesic to g through their contact points 
increases from 0 to 7r. Hence there is a point at which this angle 
equals 7r/2. It remains to be proved that there is no other point with 
this property. 

Let us consider the curvilinear coordinate system formed by the 
orthogonal geodesies to g as curves u = const, and their orthogonal 
trajectories as curves w = const., w = 0 being the geodesic g. Then the 
element of length is given by [3, p. 282] 

(3.3) ds2 = du2 + cosh2 udv2. 

If w = w(s), v = v(s) are the equations of the curve C, calling 0 the 
angle which C forms at each point with the corresponding geodesic 
v = const., we have tan <j> = cosh uv'/u', hence 

(3.4) d tan <j>/ds = [ ( W — u"v') cosh u + u'h' sinh u\ur~~2. 

The geodesic curvature of the curve u = u(s), v = v{s) is given by 
[3, p. 187] 

(3.5) K0 = (u'v" — u"vf) cosh u + lu'H' sinh u + v'3 cosh2 u sinh u. 

From this and.from (3.3) we deduce 

(3.6) (u'v" — u"vf) cosh u + u'2v' sinh u = K0 — v' sinh u. 

From u'2+v'2 cosh2 u = 1 and cosh2 u—sinh2 w = lwe have vl% sinh2 w 
= 1 - u ' 2 -V 2 , that is, z/2 sinh2 w ^ 1. Hence, from (3.4) and (3.6) under 
the assumption that /ca>l, we get (if w'^0) 

d tan <f>/ds = (/cö — z>' sinh u)u'~2 > 0. 

The angle 0 is then always increasing from M to N, that is, from 
0 to 7T. Consequently at only one point will 0 ==7r/2, which proves our 
lemma. 

4. Principal formula. Let g be a geodesic which cuts the closed con­
vex curve C and let O be a fixed point on the surface with K = — 1 
that contains C. Let w be the distance from O to g and 6 the angle 
which the orthogonal geodesic from 0 to g makes with a fixed direc­
tion at 0. Then it is known [4, p. 687] that the measure of a set 
of geodesies is the integral of the expression dg = cosh wdddw extended 
to the set. 
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Consider the set of "oriented" geodesies which cut C; it is known 
[4, p. 691] tha t 

(4.1) I dg = I cosh wdSdw = 2 i , 
J C,0*0 J 

where L is the length of C. 
According to the former lemma if we suppose that K0 > 1 in each 

point of C, on each side of g there will be only one point A in which 
the orthogonal geodesic to C will also be orthogonal to g. Conse­
quently the geodesic g can be determined by the point A (that is, by 
the corresponding value of s or r) and the distance a from A to g 
(Fig. 1). We wish to express the density dg = cosh wdOdw in terms of r 
and a. I t is known that the differential expression dg = cosh wdddw 

does not depend on the point 0 or the direction origin of the angles 0. 
Consequently we can consider for a moment that the point 0 is the 
pseudospheric center of curvature of C a t A, that is, the point in 
which the orthogonal geodesic to C a t A (r) is intersected by the or­
thogonal geodesic at A' =A(r+dr). Hence OA = R, w-R—a. Let H 
be the point in which the geodesic of support of C at A intersects the 
geodesic of support at A'. From the Gauss-Bonnet theorem we de­
duce that the area of the geodesic quadrilateral OAHA' has the value 

(4.2) (TT/2 + dr + TT/2 + w - # ) - lie = dr - # , 

dr being the angle which the geodesic of support at A forms with the 
geodesic of support at Af and d\// the angle -40-4'. But save for in­
finitesimals of second order the same area equals the area of the sector 
of geodesic circle AOA' which has the value (cosh i? — l ) ^ . Conse­
quently 

(4.3) dr = cosh i ?# . 

Since R is independent of w, from w~R—a, dO^dx//, and (4.3) we 
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deduce 

I d(a, r)/d($f w) | = cosh R. 

Hence dg = cosh wdOdw = (cosh (R — a)/cosh R)dadr or, since dr = 
Kgds, we have 

(4.4) dg = cosh adadr — sinh adads. 

Let us substitute this expression (4.4) in (4.1). For each value of s 
(or r) the arc a can vary from 0 to the breadth a of C corresponding 
to the point 5 (or r ) . Therefore 

/
dg = I dr I cosh a<fa — f ds I sinh ada 

or, in accordance with (4.1), 

(4.5) Z = I sinh,adr— I cosh ads. 
J c J c 

This is our principal formula from which we wish to obtain some 
consequences. The formula (4.5) is analogous to that obtained for 
convex spherical curves in a previous paper [5] and holds for any 
convex curve with K0 > 1 a t each point on a surface of constant nega­
tive curvature K = — 1. 

5. Consequences, (a) Let A be the minimum breadth of C, that is 
to say, the minimum value of a, and ô the maximum value of a, 
that is, the diameter of C From (4.5), (2.1), and (2.2) we deduce 

(5.1) sinh A/(l + cosh ô) g L/(2T + F) g sinh 5/(1 + cosh A). 

Therefore: on a surface of constant negative curvature K= — 1, for 
any convex curve C with Kg>\ the inequalities (5.1) are verified. 

(b) If C has a continuous geodesic curvature, from (4.5) we deduce 

/
sinh aicgds — I (1 + cosh a)ds = 0 

c J c 
or 

C a ( a a\ 
(5.2) I cosh — I Kg sinh cosh — J ds = 0. 

J c 2 \ 2 2 / 
From this and according to (3.1), we have: In any closed convex 

curve C on a surface of constant negative curvature 2C= —-1, with con­
tinuous goedesic curvature K0 > 1, there are at least two points for which 
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the radius R of pseudospherical curvature equals a/2, where a is the 
breadth of K corresponding to the point considered. 

6. Convex curves of constant breadth. In §2 we have defined the 
breadth a of a closed convex curve C on the surface with K— — 1, 
corresponding to a point A of C. When a is constant, C is called a 
curve of constant breadth. 

The geodesic circles of finite radius R are the first examples of 
curves of constant breadth a = 22?. Another class of curves of constant 
breadth is the generalization on the surfaces of constant negative 
curvature of the Reuleaux polygons [2, p. 130]. 

Let us consider a geodesic circle of radius R; we divide it into 2n+l 
equal parts and through the division points we draw the tangent 
geodesies. If two consecutive tangents intersect each other we shall 
have a geodesic regular polygon of an odd number of sides. Taking 
each vertex as center let us draw the arc of the geodesic circle which 
joins the two opposite vertices. These arcs form a Reuleaux polygon 
of 2^+1 sides, and it is easily seen that this polygon has constant 
breadth. 

The necessary relation can easily be found between the radius R 
of the geodesic circle and the number 2n+l of sides so that two con­
sécutives tangent geodesies intersect. Let A i and A »+1 be two consecu­
tive division points and OH the geodesic which halves the angle 
AiOAi+i. The condition that the geodesic OH be cut for the tangent 
geodesic at Ai is that the angle AiOH=7r/2n+l be smaller than the 
angle of parallelism corresponding to the tangent geodesic at Ai and 
to the center 0, hence [l, p. 621] 

tan (x/(2n + 1)) < 2eR/(e™ - 1). 

That is, to have a Reuleaux polygon of 2n-\-\ sides we must start 
from a geodesic circle with a radius R which satisfies the inequality 

1 
R < log 

tan (w/2(2n + 1)) 
7. Properties of the convex curves of constant breadth. The convex 

curves of constant breadth on the surfaces of constant negative cur­
vature (or on the hyperbolic plane) have analogous properties to the 
curves of constant breadth on the plane. For example it is easily 
seen that the constant breadth a equals the diameter S. Therefore 
if A is a point of C the orthogonal geodesic g to C at A will cut C at 
the point A1 and at this point g will also be orthogonal to C. The 
points A and A' can be called opposite points. 
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We shall prove that if C is of constant breadth any orthogonal 
geodesic to C, say AA\ will intersect a neighbouring orthogonal geo­
desic at a point contained in the arc AA'. 

FIG. 2 

Let B^A(r+dr) and BB1 be the orthogonal geodesic to C a t B 
(Fig. 2). If BB' does not intersect the arc AA1 the point B' must have 
the position indicated in Fig. 2. But in this position we have 

(7.1) AA' <AH + HA', BB' < BE + HB' 

and by addition 

(7.2) AA' + BB' < AB' + BA'. 

Since Cis of constant breadth we ha,veAA'~BB'>AB', BA1 and 
therefore AA'+BB'>AB'+BA' which gives a contradiction with 
(7.2). 

From this we deduce that the pseudospherical radius of curvature 
R is always finite and not greater than a. Moreover since the orthogo­
nal geodesies at A and B are also orthogonal geodesies at A' and Bf 

the pseudospherical center of curvature will be the same at A and Af. 
Hence: the sum of the pseudospherical radii of curvature corresponding 
to opposite points equals the breadth a. 

Since R < oo, we shall have K0 > 1 ; therefore we can apply the for­
mula (4.5) which gives, according to (2.1), 

L = (2T + F) sinh a — L cosh a, 
that is, 

(7.3) L = (2TT + F) tanh (a/2). 

We conclude the following theorem : For any convex curve of con­
stant breadth on the surface of constant negative curvature K*=* — 1, the 
equation (7.3) holds. 

If K= - 1 / a 2 instead of - 1 , (7.3) gives 

L/a = (2TT +F/a2) tanh {a/2a). 
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Muliplying both sides by a and letting a--»oo. we find 

L = ret, 

which is a well known relation between the length and breadth of the 
curves of constant breadth on the plane [2, p. 131]. 
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