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1. Introduction. The main purpose of the following paper is to show 
tha t in general the mean curvature of a surface yields an algebraic 
determination of its second fundamental form. We do this by deriv­
ing the explicit equations giving this determination. The continuity 
and differentiability properties of the various functions entering into 
the discussion will be assumed without special mention since these 
requirements are obvious from the methods and equations employed. 

We denote the mean curvature by H and the Gaussian curvature 
by K. The symbols gaa and baa will be used to denote the symmetric 
components of the first and second fundamental forms of the surface 
(two-dimensional surface in Euclidean three space). Between these 
quantities we have the relations 

(1.1) H = g baB/2 and \ gaa | K = \ ba8 | = bnb22 - b12, 

where \gas\ and | baa\ stand for determinants. The first of these rela­
tions can be regarded as defining the mean curvature. The second is 
known as the Gauss equation. We may mention here also the Codazzi 
equations which play an important role in the following, that is, the 
equations baa^ — bay.a, where the "comma" denotes covariant differ­
entiation based on the first fundamental form of the surface. 

We shall find that the combination H2 — K enters into most of the 
following equations. This quantity satisfies the condition F - Z ^ O . 
For, if we choose a coordinate system such that a t a point P we have 
gcta^àaB, then at this point 2H = bii+b22 and hence 

4(ff2 - K) = (on + 26nJ„ + 4 ) - 4(6ii»„ - b\2) 
2 2 2 

= (Jll ~ 2ÔnZ>22'+ #22) + 4Ji2 

= (611 - M ' + 4*12 ^ 0. 

Suppose that H2~K = 0 in a region R of the surface. Then at a 
point P of R and relative to a coordinate system for which gap = àaa 
at P we have 

(1.2) bn + b22 = 2H and bub22 - b\2 = H? 
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Squaring the first of these equations and combining with the second 
leads to the resul't (&ii~&22)2 = 0. Hence 611 = 622 at P . The first equa­
tion (1.2) then gives bn = H and 622 — H. From this and the second 
equation (1.2) we now have &i2 = 0. From these relations and the fact 
that gap — dap we can now unite bap = Hgap. These latter relations are 
independent of the coordinate system employed and hold at all points 
of the region R in which the condition H2 — K — 0 is satisfied. By dif­
ferentiating both members of the relations bap — Hga^ covariantly and 
then making use of the Codazzi equations we now easily deduce that 
H = const. From IP — K=>0 it then follows that K = const. Hence the 
condition H2—K = Q in a region R of a surface implies that the mean 
curvature H and the Gaussian curvature K are constant in R. We shall 
make use of this result in the following discussion. 

2. Determination of the covariant derivative of the b tensor. Differ­
entiate each of the equations (1.1) covariantly to obtain 

Ha = [g»6 l l t l + 2g"b12,i + #22622.i]/2 

Hy2 = [g»J l l l 8 + 2#12612,2 + g22*22.2]/2, 

I ga$ I Ka = £11,1622 + £11622,1 ~ 26i26i2,i, 

I gap J K,2 = 611,2622 + 6n622,2 ~" 26i26i2f2. 

Now make the substitutions 

gU = £22/ \gap\, gU = ~ git/ \gafi\9 g22 = gll/ I g^ \ 

in the first two of the above equations and then write the resulting 
equations in the form 

6n,i = (l/#22) [2 I gap I Ha + 2g12bu,i — 5:11622,1], 

622,2 = (1/gll) [2 J gap I H,2 + 2gi26l2,2 — £22611,2}. 

Use these latter equations to eliminate the quantities 6n,i and 622,2 
from the right members of the above equations for Kyi and K,2. Then 
making use of the Codazzi equations we find that 

2(^12622 ~ #22612)611,2 + (#22611 — £11622)622,1 

= I gap I #22#,1 — 2 I gap | 622#,1, 

(#11622 — #22611)611,2 + 2 ( # i 2 6 n — #11612)622,1 

= I gor/3 I gllK* — 2 I gap I 6ii#,2. 

We consider these equations as equations to determine the quantities 
611,2 and 622,1. The determinant of this system is 
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A = 
2(^12^22 — g22&12) (£22^11 — #11622) 

(6ng22 — £22611) 2 ( g i 2 6 n — #11612) 

When this determinant is expanded and the terms collected we find 
that A = 4[iï2—K] J gafi\2. The solution by Cramer's rule gives 

611,2 = ( | g«p\ /A)[2#i2g226niT,i — 2gn#226i2 K,1 — 4gi26ii622fl',i 
2 

(2.2) + 4giiôi2622flr,i — #ng226iiJK',2 + £11622 ,̂2 
2 -i 

+ 2g22bnH,2 — 2#ii6u622fl',2j, 

622,1 = ( J g«/3 J /A) [giigi2622^,2 — 2gi26ii622-ff,2 — 2gng226l2i£,2 
2 

(2.3) + 4g226ll6i2ff,2 — #11#22622-K",1 + 2gn622fl',l 
2 -I 

+ #22611 ,̂1 — 2#226n622i?,iJ. 

Since in the right members of (2.1) we have 612,1 = 611,2 and 612,2 = 622,1, 
the equations (2.1), (2.2) and (2.3) give the complete determination 
of the quantities 6a/s,7. If we consider these equations at an arbitrary 
point P but relative to a coordinate system such tha t gap = ôaj3 at P 
they will be found to simplify considerably. Thus we have 

6n,i = 2fl",i — 622,1, 622,2 = 2£T,2 — 611,2, 

(H2 - IE)-1 

611,2 — [— 26i2l? ,1 + 46i2622-ff,l — 6n2£,2 + 622«K,2 
4 

(2.4) + 26Îitf,2 ~ 2611622^,2], 
(ff2 - Ü : ) - 1 

622,1 = t*~" 26I2JK",2 + 46u6i2fî",2 — 622^,1 
4 

2 -, 

+ 2622^,1 + biiK ,1 — 2611622 ,̂1] 
a t a point P where g«0= 8ap. The quantities 611,2 and 622,1 in the right 
members of the first two equations (2.4) are considered to have the 
determination given by the last two of these equations. 

3. Integrability conditions. We now deduce the integrability condi­
tions derivable from the system (2.4). In conformity with the way 
in which the third and fourth equations of this system have been 
written we assume tha t JHT2—K>0. Later we shall show that the final 
integrability relations are independent of this condition. 

Since the covariant derivative of the fundamental tensor (compo­
nents gap) vanishes, it is permissible to differentiate the equations of 
the system (2.4) covariantly, the result of such differentiation giving 
relations which are valid a t a point P for which gap = ô«/j. Thus let 
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us differentiate the first equation (2.4) covariantly with respect to x2 

and then subtract the quantity 611,2,1 from both members of the re­
sulting equation. This gives 

(3.1) 611,1,2 — 611,2,1 = 2JET,I,2 — 622,1,2 —" 611,2,1. 

The quantities 6n,2,i and 622,1,2 in the right member of (3.1) can be 
determined by covariant differentiation of the third and fourth equa­
tions of (2.4) respectively. For the difference appearing in the left 
member of (3.1) we have by Bianchi's identity 

611,1,2 •— 611,2,1 = — 6<ril?ii2 — 6ioJ5n2 = — 2buBu2 

~ - 2bugTBrll2 = — 2bugT(grlgll - grlgu)K 

= - 26i2gnü: + 2bug12K = - 2b12K, 

where the B's are the components of the curvature tensor and use 
has been made of the fact that gaa = da8 in obtaining the final expres­
sion. When these substitutions are made in (3.1) we obtain a rather 
complicated equation which is capable of simplification. In connec­
tion with this process of simplification let us define the quantities 

b<* = B<*/\gl„\, 

where BaB denotes the cofactor of the element baa in the determinant 
I baa\. As so defined the quantities baB are the components of an ab­
solute symmetric contravariant tensor. Then the above equation re­
duces to one which can be written in the form 

[2(#2 - K)b«PHa8 - AHb^HaHs + 2b^KaH8 + 2Hg^KaHB 

- g^KaKs - ( # 2 - K)g«eKaB - 4Z(2J2 - i02]612 = 0, 

in which for simplicity we have omitted the "commas" denoting co-
variant differentiation. Again we have 

612,1,2 —' 612,2,1 = 611,2,2 — 622,1,1 

in view of the Codazzi equations. By Bianchi's identity the left mem­
ber of this equation becomes (6n —622)^. The quantities 611,2,2 and 
622,1,1 in the right member can be calculated by covariant differentia­
tion of the third and fourth equations (2.4). When these substitutions 
are made we obtain an equation which, after considerable reduction, 
becomes 

(3.3) [ ](6n - 622) = 0, 

where the bracket stands for the bracket expression in (3.2). 
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If H2-K>0 it follows from §1 that either bn-b22^0 or bu>*0. 
Hence it follows from (3.2) and (3.3) that 

2(H2 - E)b<*H<# - lHb<*HaE$ + 2b<*KaHfi + 2Hg*KaEfi 

- g*KaKfi - (E2 - K)g«Kafi - ±K(E2 - K)2 = 0 

at a point P where H2 —K>0. From continuity, (3.4) is also valid at 
a point P where H2 — JK"==0 provided that this point P is a limit of 
points at which H2—K > 0. Finally suppose that i î 2 — K = 0 at a point 
P which is not a limit of points at which H2—JK" > 0. Then this point P 
will be contained in a region R of the surface within which H2—if = 0. 
But then the left member of (3.4) is seen directly to vanish at P since 
H = const, and K = const, in R by the italicized result in §1. Hence 
the equation (3.4) is satisfied at all points of the surface (without regard 
to whether the quantity H% — K vanishes or not). 

4. Closed surfaces of constant mean curvature. On the basis of the 
equation (3.4) we can obtain a simple direct proof of the known result 
tha t a closed surface (open and compact Riemann space) of constant 
mean curvature II and non-negative Gaussian curvature K is of con­
stant Gaussian curvature. In fact if H= const., (3.4) becomes 

(H2 - K)g<#Kafi + ga*KaKt + 4K(E2 - K)2 = 0. 

Integrating the left member of this equation over the surface we find 
immediately tha t 

ƒ g<*KaKpdS + 2 ƒ K(E2 - K)2dS = 0. 

If K â 0 it follows that each integral must vanish separately. The van­
ishing of the first integral implies that Ka = 0 or K = const, over the 
surface. 

5. Determination of the quantities bap in general. I t is desirable for 
the requirements of the following calculations to put equation (3.4) 
into a more contracted form. This can be accomplished by writing 

(5.1) b^QafitBgiPafi, 

where 

Qafi - 2(H2 - K)Hap - ÏHHaHp + KaE0 + KpEa, 

PaP - (H2 - JS)Kafi + KaKt - HKaHp - HKpHa + 2K(H2 - K)*g*. 

As so defined the P ' s and Q's are the components of symmetric ten­
sors. 
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Now consider the equation (5.1) and also the first of the equa­
tions (1.1). Write these in the following expanded form 

2) iQ22hl " 2Qubn + Qnh2 * ' gM' ' g*jPa* 
— 2 gubu + £11622 = 2 J gMr J 2J. 

(5.3) 

We use these equations in the determination of the bap. The matrix 
of the coefficient of the b's in these equations has the same rank as 

(?22 Ql2 o i l 

#22 #12 g l l 

In general the rank of this matrix will be two. In the calculation which 
follows we assume this general case and suppose furthermore for defi-
niteness tha t the last of the second order determinants of the matrix 
does not vanish. The results obtained will be seen to be independent 
of the nonvanishing of this particular determinant and will depend in 
fact only on the assumption that the above matrix has rank two. 

Considerable simplification will be obtained by carrying out the cal­
culations at a point P relative to a coordinate system with respect to 
which gap = 8aj3 at P . The results found under this condition can im­
mediately be put into a general invariant form. The above nonvan­
ishing determinant in the matrix (5.3) now has the value Qi29^0 and 
under this condition the equations (5.2) can be solved for bn and 622 
in terms of &n. We have 

(5.4) bit = [(Ö22 - Qu)bn + (2HQn - £ P««)]{QnYl/2> 

(5.5) 622 = 2 H - J u . 

Now turn to the second of the equations (1.1) and into this equation 
substitute the above values of 612 and 622. The result is a quadratic 
equation in bn the solution of which is 

/ . , N r 4FÖ12 - (Ö22 ~ Qn)(2HQu ~ E Paa) ± A™ 

(5.6) on = (On - On)2 + 462
12 

where 

A = [(Ö11 - Qii)(2HQn - £ Paa) - 4HQl]2 

- [(Q.2 - On) ' + 4Q\t][(2HQn - £ ?««)* + ^Qnl 

By multiplying out the factors occurring in the numerator of the ex­
pression for bu and combining in an appropriate manner we find that 

*HQu - (Q22 - Qn)(2HQn - £ Paa) 

= [ ( Z ^ C C O w ) - 4ff|Q*|] + 2Qn[HZQ«« - £*« . ] . 
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and 

A = 4GÎ,[2ff(£.P.«)(EQ«0 - K(ZQ«*)* 

- ŒP.J - *tf - K)\Q«\]. 
Substitution of these values into (5,6) gives 

= [S^.«ZQft»-4g|Q«gl] 2 [ # £ & , , - EP- lQu 

(5.7) " [(Gii-Çu),+4QÎ1] [(Qn-Qiù'+Wj 

2Q»[2gE P««E<2ft»-*(E<2««)2-(E Ptt«)2-4(H2-g) | Q„g|]"2 

[(Qit-Qu),+4G,
n] 

Now consider the ratio 

a«f """" ^ ^ -Pact 

[(Qn - Qiù* + 4Ç«J 

If we expand and rearrange the terms of the numerator and denomi­
nator this ratio becomes 

2H(£Q««)2-8H\Qae\ nTj 
= la* (Ee««)2-4|Q^| 

e can now immediai 
ct 

[ £ - P « £ Q W - 4 F | Q . * | ] , 2[flEe««- E ^ f e 

Since 611+622 — 2H we can now immediately deduce the expression 
for 622- We have in fact 

6 2 2 = 
[(Qv-Qlù'+Wj [(Ö22-ÖH)2+4Ö2

12] 

_2g»[2g£ Pa«ZQ^-.g(EQaa)a-(£ Paay-m*-K) I Q«g[]1/2 

To obtain the corresponding expression for bn we substitute the 
expression for bn given by (5.7) into the right member of (5.4). After 
cancellation of various terms the resulting equation reduces to 

= 2 ( g £ Q « « - Zf a«)Qi2 

( 5 9 ) " l(Qn-Qiù'+4QSt] 

(ÖM-öll) [2^E Pa«E © » - £ ( £ G«.)* 

+ -(EPa«)2-4(g'-u:)lQggl]^ 
[(Ö22-Ön)2+4Ö2J 

The problem now is to combine equations (5.7), (5.8) and (5.9) 
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into a tensor system of recognizable invariantive character. A step 
in this direction has already been accomplished by the way in which 
certain terms in the right members of these equations have been writ­
ten. For example ]C^«« becomes gaPPafi when referred to arbitrary 
coordinates. For this purpose we define the following scalars: 

w = [(Ö22 - on)2 + 4e2
2] = o f W - 41 e* I /1 *«I. 

R = E P««Z Qfifi - 4# I Qa, I = g^Patt'Q», - 4# I Qafi | / \gafi | , 
U « # Z Qaa - E * « « = Bg*Qa<l " « * P r f , 

in which the middle members in these equations are the expressions 
for these scalars when gap = 8a^ In terms of these scalars the expres­
sion underneath the radical in the above equations can easily be 
shown to be given by (H2 — K)W— U2. Next define the symmetric 
tensor V with components 

in which the e's are the components of the skew-symmetric tensor de­
fined by €12= — €21= (\gap\ )1/2 and €n= €22 = 0. We note in particular 
that Fn = 2<2i2, 722= — 2<2i2 and Vn = Qn — Qu when ga(j = ôap. On the 
basis of this observation and the above definitions of the scalars W, R, 
and U we now find that equations (5.7), (5.8) and (5.9) can be com­
bined into the system 

(5.10) bafi = RW-iga? + 2UW~1Qae ± {[(H2 - K)W - U2]u2/W} Va0. 

The determination (5.10) of the quantities bap is valid in any region 
of the surface in which the condition W>0 is satisfied. If W—0 at a 
point P we see from the above expression for this scalar that Qn = Ç22 
and Q12 = 0 provided that gap = S«p at P . But then we can write 
0a^=Xg«/3, that is, the quantities Qap are proportional to the quanti­
tiesgap and hence the matrix (5.3) has rank less than two at P. Con­
versely if this matrix has rank less than two, the Q's and the g's are 
proportional and the scalar W=0. 

In (5.10) the mean curvature H must be such a function that the 
conditions 

(5.11) W>0, (H2-K)W - U2Z:0 

are satisfied. Conversely if H is any function satisfying the conditions 
(5.11) it is evident from the derivation of (5.10) that the quantities bap 
given by (5.10) satisfy the algebraic conditions (1.1). 

6. Relations between the invariants. The scalars W, P , and [/and 
the tensor V satisfy the following relations 
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EW = R + g«*QapU. 

The first of these can be expressed by saying that the scalar W is 
one-half the square of the tensor V. The derivation of these relations 
can easily be carried out on the basis of the definitions of the in­
variants Wy R, U, and F in §5. 

7. The exceptional case W=0. Suppose W=0 over a closed sur­
face. Then Q«/3=A(#)ga0, and substituting into this equation the value 
of Qap from §5 we have 

(7.1) 2(H2 - K)H«t - 4HHaHp + KaHp + KpHa - Xga*. 

Now bafiQap=ibafigaek = 2H\. Hence (5.1) becomes 

(H2 - K)g<*Kat> + ga^KaK, - 2Hg«eKaHp 

+ 4K(H2 - K)2 = 2H\. 

Next put H 2 - X = Ö(èO) or K = H2-B, from which we deduce 

Ka = 2H.H a — $a> 

Kap ==s 2HaHp -f- 2HHa& — Oap» 

When these substitutions are made in (7.2) and the quantities Ha& 
in the resulting equations are eliminated by means of (7.1), we have 
an equation which reduces to 

(7.3) 2$g<*HaHfi - Og^dafi + g<*0Jifi + 4:K62 = 0. 

Now integrate the left member of (7.3) over the closed surface. 
We thus find tha t 

f Bg^HaHpdS + ƒ g^dJpdS + 2 ƒ K62dS « 0. 

If K>0 a t every point, each of the integrands is non-negative and 
hence must vanish over the surface. Hence from the third integral 
we must have 0 = 0 and from §1 this means that the mean curvature 
and Gaussian curvature are constant. Hence if the scalar W vanishes 
over a closed surface of positive Gaussian curvature, the mean curvature 
H and the Gaussian curvature K are constant over the surface. 

I t follows from the above result tha t for the case of a closed ana­
lytic surface which is of positive but not of constant Gaussian curva­
ture the scalar W cannot vanish over any region R of the surface. 
Hence W can vanish only at exceptional points and elsewhere on the 
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surface the determination of the second fundamental form given by 
(5.10) will apply. 

8. The differential equations satisfied by the mean curvature. We 
have observed (§5) that the quantities given by (5.10) satisfy (1.1) 
provided that H is a function satisfying (5.11). However in order for 
the function H to be the mean curvature of a surface and have the 
above quantities bap as the components of its second fundamental 
form the Codazzi equations must also be satisfied, that is, we must 
have &a/3,Y = ôa7,/3. I t may be observed that for the case of the two-
dimensional surface under consideration these latter equations can be 
written in the contracted form 

(8.1) bafi.réy = 0. 

Understanding that the ba$ are given by (5.10) in terms of the mean curva­
ture H and its derivatives, we see that the two equations (8.1) are the 
differential equations satisfied by the mean curvature H. Conversely if 
the scalar function H satisfies the conditions (5.11) and the differ­
ential equations (8.1) over a given abstract two-dimensional Riemann 
space, then the quantities bap defined by (5.10) together with the func­
tion H will be the components of a possible second fundamental form 
and the mean curvature respectively for the given Riemann space 
considered as a surface in three-dimensional Euclidean space. 
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