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ALGEBRA AND THEORY OF NUMBERS 

1. H. W. Becker: The composite umbra theorem. 
Let U, V, W, • • • be different umbrae, and let [ ] confine a polynomial 

umbra. It is well known that [C/+F]na=(27-fF)w, based on the generator equation, 
eW+n*mjr-e7-[UV]«, needs analogous definition. e l T O - ^ - ( ^ - » ) a o ^ « * ( F ) , 
where (V)n is a Jordan factorial, and [Ue]n*=<l>n(U) is the exponential polynomial of 
E. T. Bell (Ann. of Math. vol. 35 (1934) p. 263). Then [UV]n- [Ue*(V)]n = 4>n(U*V), 
where * means that every term in U of weight m is multiplied by ( V)m. This is the 
composite umbra theorem. Such asymmetric composition is in general commutative, 
associative and distributive only for scalars, or for umbra iterates and inverses (calcu­
lated from UU** U®\ UU^^^l, and so on). These decompositions greatly simplify, 
if Uo— £/i — l. Or they may be generalized, to an umbra form [/£/]n, where ƒ is any 
function of any number of umbrae. Where the U are scalars, [fU]n reduces to (fU)n

t 

conveniently verifying the theorem and its consequences. The extension to any num­
ber of factors, [t/FFT • • • ], is in close parallelism with the iterated exponential 
integers of E. T. Bell (Ann. of Math. vol. 39 (1938) p. 539), the classic instance. 
(Received October 28, 1944.) 

2. H. W. Becker: The hyper-umbra theorem. 
An umbra U is the representative of a series Uo, • • • , Unt

 m • • • The umbra of 
an umbra, and so on, to m dimensions, or blanks, is called a hyper-umbra, and written 
mU—mU{, • • • , } . The fundamental umbra is e, of generator eet"l^ete. Its property 
(e) = l, where ( ) is a Jordan factorial, underlies the new operational transformation 
eE~eE* in the finite difference calculus. Application to an umbra yields eB*U{0\ 
=e U{ e]. The classic instance is Dombinski's theorem, in the form eE0r=£€r. The oper­
ation may be iterated, along each dimension of a hyper-umbra. Denote by me a contin­
ued exponential of the wth order. Then meBomU{0, • • • ,0} =™emU=en'mU{ei • • • , € } . 
This is the hyper-umbra theorem. Where mTJ=* Y is the cubic array whose typical cell 
is ( UZ+X)n, this gives 9eY=exp exp exp F—ee • eeU. Where m£/= Wis the square array 
of cells ÏJZn = (U+ • • • + U)n to ZZTs, eeW=*eeU. This is remarkable, in that the part 
is equipotent to the whole. If £7=1= the identity umbra, then W=ili"=the table of 
all integer powers. Thus the power matrix is equipotent to unity. The theorem gen­
eralizes tomeTE*mU{0, • • • ,0}-memU,T**emT*{€T, • • • , eT], where * denotes scalar 
or subscript multiplication according as T is ordinary or umbral. (Received October 
28, 1944.) 
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3. R. H. Bruck: Quasigroup theory. IV. Associatral series. Pre­
liminary report. 

For a loop G, finite or with suitable chain conditions for normal subloops, define 
the associator A =A(G) to be the maximal normal subloop of G contained in the three 
associators of G (see abstract 50-5-107). If H is any normal subloop of G define 
(i) Z7= U(H) to be the unique normal subloop of G such that U/H=*A(G/H), and 
(ii) L~L(H) to be the minimal normal subloop of G such that U(L)Z)H. Associatral 
series, and in particular the upper and lower associatral series, may be defined analo­
gously to central series. If any associatral series extends from 1 to G so do the upper 
and lower series, and the latter have equal length a, the associatral class of G. The 
associatizer L(G) may be used for a theory of associatral solubility analogous to ordi­
nary (central) solubility. (Received November 6, 1944.) 

4. C. J. Everett: The basis theorem for vector spaces over rings. 
A vector space of n basis elements over a ring with unit has the property that every 

proper subspace has a basis of at most n elements if and only if the ring has no zero 
divisors and is a right-principal-ideal ring. This perfects Theorem F of the author's 
Vector spaces over rings, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 312-316. (Received 
October 26, 1944.) 

5. C. J. Everett and S. M. Ulam: Projective algebra. I. 
For a subset A of a direct product (X, Y) of two sets, define x(A) as the set of all 

(x, y0) for which there exists a y such that (x, y) ÇzA, and y (A) similarly, where (xo, yQ) 
is a fixed point of (X, F). Define the direct product A XB for A C (X, y0), B C (*o, Y) 
in the usual way. If a boolean algebra $8 of subsets of (X, Y) = I is closed under pro­
jection and product, it is called a projective algebra of (X, Y) and has properties 1. 
x(AKJB)=x(A)KJx(B); 2. xy(I)*=(xo, yo)*=*yx(I) is an atom in $8; 3. x(A)=0 if 
and only if A =0; 4. xx(A) =x(A); 5. x(A XB) =*A, y{A XB) = £ , and A XB contains 
all sets with these projections; 6. (X, yo)X(xo, yo)=*(X, y0); 7. direct product is dis­
tributive with respect to union; with similar properties for y in 1, 3, 4, 6. An abstract 
boolean algebra with mappings x(A), y (A), and product satisfying these properties 
as postulates is called a projective algebra. It is proved that every such algebra is em-
beddable in a complete ordered projective algebra, and that every projective algebra 
of all subsets of a set is representable as a projective algebra of some (X, F). (Re­
ceived October 26, 1944.) 

6. N. J. Fine: Congruence properties of the elementary symmetric 
functions. 

Define «*(«) as the elementary symmetric function of order k in n independent 
variables. Let Pn(p, k, a) be the probability that w*(») be congruent to a (mod p)f 

where p is any prime. It is proved that lim Pn(p, k, a) ^Pip, k, a) exists. If 5 is the 
number of ones in the dyadic expansion of k, then P(2, k, 1) = 1/2*. Simple recursion 
formulas are given for P(3, k, a). The following general theorems are proved: 
(i) P(p, k, a)=*l/p for k = rpt, with 0<r<p, all p and t. (ii) P(p, kt 0)>l/p for 
k = (p- Vïpt+R, with 0 <R<pK (iii) P(p, k, 0) >C(p) >0 for all positive k. It is con­
jectured that equidistribution holds only if k =*rp%\ that P(p, k, 0) is not less than l/p 
for all p and positive k; that P(p, kp, a) aP(p, k, a) ; finally, that lim sup P(p, k, 0) = 1. 
(Received October 26, 1944.) 



60 ABSTRACTS OF PAPERS {January 

7. A. P. Hillman: On derivatives of differential polynomials. 
Proofs of the following results are given. Let F be a differential polynomial effec­

tively involving the unknowns yit • • • , yn. Then F holds no (essential) component 
of the manifold of its derivative JFi. Every component of the rth derivative Fr of F 
is the general solution of a differential polynomial of order at least r in at least one 
of the unknowns. For r sufficiently large, Fr is algebraically irreducible, its manifold 
is irreducible, and the perfect ideal it generates is prime. (Received November 30, 
1944.) 

8. Nathan Jacobson: A problem on algebraic algebras. 
The question considered in this paper is the following one: Let SÏ be an algebra 

over a field $ such that (1) every element of % satisfies an equation of degree not 
greater than N with coefficients in # and (2) % has a finite number of generators. 
Then is % necessarily an algebra with a finite basis? This is a special case of a problem 
recently proposed by Kurosh and it is analogous to the well known Burnside problem 
in the theory of groups. A partial solution of the problem is obtained in this paper. 
It is shown that the question can be answered in the affirmative for algebras that are 
semi-simple in the sense that they contain no nil ideals not equal to 0. This makes it 
possible to reduce the problem to the more special one in which (1) is replaced by (1') 
every element of St satisfies the equation aN*=0. It is shown also that an affirmative 
answer to a special case of Burnside's problem on groups would imply an affirmative 
answer to our problem for algebras over a field of prime characteristic. (Received 
October 13, 1944.) 

9. Irving Kaplansky: The commutativity of generalized Boolean 
rings. 

Stone's observation that a ring in which #2=# is necessarily commutative is ex­
tended to more general rings, and in particular to the p-rings of McCoy and Mont­
gomery (Duke Math. J. vol. 3 (1937) pp. 455-459). It is shown that a ring of char­
acteristic p in which xn =*x is commutative if n **pr with r a power of 2 ; and regardless 
of the characteristic, it is commutative if the regular polygon of n — 1 sides is con­
structible by ruler and compass. The lowest case where commutativity remains in 
doubt is n «8 . (Received November 30, 1944.) 

10. Fred Kiokemeister: The Asano postulates for orders in a linear 
algebra. 

Let g be a domain of integrity with unique factorization of ideals into products 
of prime ideals, and let P be the quotient field of g. An investigation of the g-submod-
ules of the linear algebra A over P leads to the theorem that if R is an order in A, 
the maximal chain condition and the modified minimal chain condition hold for regu­
lar ideals in R. The Asano postulates for an arithmetic are shown to hold in A. (Re­
ceived October 25, 1944.) 

11. Fred Kiokemeister and G. W. Whitehead: A coset theory for 
left loops. 

A left loop is a multiplicative system Q with two-sided identity such that the 
equation ax =»& has a unique solution for every a, b £ Q . A subset If of Q is an admissi­
ble left subloop if it is closed under multiplication, the solution of the equation a#«ô 
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is in H whenever a,bÇzH, and xiyH) *» (xy)H for every x, y £ Q . Under these circum­
stances Q has an expansion in left cosets of H, and the system Q/H of left cosets is 
made into a left loop under a suitable definition of multiplication. The group & 
spanned by the left multiplications (that is, the permutations Lx(a)*=ax) of Q is 
introduced, and an isomorphism of Q with 8/80 (where 80 is the subgroup of 8 con­
sisting of all permutations keeping the identity E fixed) is established. It is shown that 
the admissible left subloops of Q are in 1:1 correspondence with the subgroups 
9 ) 0 8 o of 8, and isomorphisms 2££9tt/8o, <?/2?=8/9tt are established. An extension 
theory is developed: given left loops H and K, a construction is given for all left loops 
Q such that Q/H*=*K. Necessary and sufficient conditions are given (when H is a 
group) that Q shall be a group, and specialization of H to be normal yields the Schreier 
extension theory. (Received October 20, 1944.) 

12. Seymour Sherman: Complex polynomials and polygonal do­
mains. 

Theorems of Sturm, Routh, and Hurwitz have been generalized so as to provide a 
finite numerical algorithm for finding the number of such roots of a polynomial with 
complex coefficients as lie on a generalized polygon or linear transformation thereof. 
By this means a finite procedure is given for determining the number of roots of a 
polynomial lying in a quadrant, half-plane, circle, or circular sector. Such problems 
have proved of interest recently in connection with airplane flutter (S. Sherman, 
Jane DiPaola, and H. Frissel, Routh*s discriminant, flutter, and ground resonance, 
abstract 50-7-190) and econometric business cycle analysis (P. A. Samuelson, Condi­
tions that the roots of a polynomial be less than unity in absolute value, Annals of Mathe­
matical Statistics vol. 12 (1941)). (Received October 17, 1944.) 

A N A L Y S I S 

13. E. F. Beckenbach: A Looman-Menchoff theorem for Newtonian 
vectors. 

It is shown that if the vector function X(x, y, z) is continuous in the finite domain 
D, if except at most at the points of a denumerable set of points in D, X(x, y, z) is 
totally differentiate in the planes parallel to the coordinate planes, and if the curl and 
divergence of X(x, y, z) vanish almost everywhere in D, the X(x, y, z) has continuous 
partial derivatives of all orders. (Received October 28, 1944.) 

14. R. E. Fullerton: Linear operators with range in a space of dif­
fer entiable functions. 

The Banach space 0 ( 0 , 1) is defined to be the space of functions possessing n con­
tinuous derivations over the interval (0,1) with norm||/|| «l.u.b.o£<£il.u.b.jb£n|/(fc)(0|. 
If Tx**f is a bounded linear operator from a Banach space X to 0 ( 0 , 1), Tx is repre-
sentable in the form $tx where $t is a function defined from (0, 1) to the space £ con­
jugate to X. In this paper, necessary and sufficient conditions that $t represent such 
an operator are found. Both bounded and completely continuous operators are in­
vestigated. Particular attention is devoted to representations of operators from se­
quence spaces and Lebesgue spaces to the space Cn(0, 1). In all cases the expression 
for the norm of the operator is obtained in terms of the function $t> (Received October 
20,1944.) 


