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In connection with some other work of the author a question arises 
concerning the form of the general bounded linear1 functional on 
certain vector lattices.2 It is the purpose of this note to show that 
this question is completely equivalent to a question in measure theory 
which has been discussed and partially answered by Ulam [2]. 

Let 5 be an abstract set and let % be the vector lattice of all real-
valued functions defined on S. For each So in S the function F on gf 
such that F(f) =/(so) for all ƒ in g? is clearly a linear functional. We 
shall call it the point functional belonging to s0 or simply a point func­
tional. Obviously every point functional and hence every finite linear 
combination of point functionals is bounded in the sense that it car­
ries every bounded subset of g into a bounded set of real numbers. 
Our question is as to whether every bounded linear functional on § 
is a finite linear combination of point functionals. We shall show that 
this is the case if and only if there exists no countably additive meas­
ure a which is defined for all subsets of 5, which is zero at points, 
which takes on only the values zero and one, and which does not van­
ish identically. 

It is well known that every bounded linear functional on a vector 
lattice is a difference of non-negative linear functionals8 and it is obvi­
ous that a non-negative linear functional is bounded. It follows that 
we need only consider non-negative linear functionals. Passages from 
a measure to a non-negative linear functional defined on a class of 
functions and vice versa are of frequent occurrence in mathematical 
literature. The proof of our theorem rests basically on the fact that 
when the methods used in effecting these passages are applied to the 
case at hand one obtains a natural one-to-one correspondence be­
tween the non-negative linear functionals on g and the countably ad-

Received by the editors March 7, 1944. 
1 By a linear functional we mean a functional which is additive and homogene­

ous; that is, one which preserves linear combinations. 
2 See chap. 7 of [ l] for definitions of the terms from the theory of vector lattices 

which we shall use. Numbers in brackets refer to the references cited at the end of the 
paper. 

8 This is proved on p. 115 of [ l] for additive functionals and it is clear that an ad­
ditive non-negative functional must be linear. 
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ditive measures which are defined on all subsets of S and take on 
only a finite number of different values. 

LEMMA 1. If P is a non-negative linear functional on $f and if 
0i, 02, • • • are the characteristic functions of mutually disjoint subsets 
of S then at most a finite number of the numbers P(0i), P(02), ' ' ' are 

different from zero. 

PROOF. Suppose the contrary and change the notation so that 
P(0i), P(02), • * • are all different from zero. Let Ei be the set whose 
characteristic function is 0t-, i = l ,2, • • • , andletE==£iU£2^ • • • . 
For each 5 in Ei let g(s) = 1/P(0») and for each 5 in S—E let g(s) = 0. 
Then for each n « l , 2, • • • , g^(0i/P(0i)) + (02/P(02))+ • • • 
+ (0n/P(0n)). Hence P(g)^l + 1+ • • • + 1 - » for » = 1, 2, • • • 
and this is impossible. 

LEMMA 2. If Pisa non-negative linear functional on gf then P = P i+P 2 

where Pi is a finite linear combination of point functionals and P2 is a 
non-negative linear functional which vanishes on characteristic f unctions 
of points. 

PROOF. By Lemma 1 there are at most a finite number of points in 
5 whose characteristic functions are not taken into zero by P. Let 
Su Siy - • • , sr include all of these points and let Pi(f)=P(<f>i)f(si) 
+P(<t>2)f(s2)+ • • • +P(<t>r)f(sr) for all ƒ in § where 0» is the charac­
teristic function of Si for i = l, 2, • • • , r. Then let P2 = P —Pi. It is 
obvious that P2 is linear and vanishes on characteristic functions of 
points. Finally since any non-negative member of § is the sum of a 
function which vanishes at the Si and a linear combination of the 0» 
with non-negative coefficients it is easily verified that P2 is non-
negative. 

LEMMA 3. If Pis a non-negative linear functional on $ which vanishes 
on all characteristic functions then P vanishes identically. 

PROOF. It is obviously sufficient to show that P ( / )=0 whenever 
/ ^ 0 . For each f = 1, 2, • • • let £» be the set of all s in S such that 
t — 1 ^f(s) <i and let 0* be the characteristic function of E%. For each 5 
in S there exists one and only one t = l, 2, • • • such that $££*. Let 
g(s)=if(s). For each w = l, 2, • • • , g - 0 i g - 0 a g - • • • -0n-ig 
*zn(f--0i/—02/— • • • — 0n-i/) and it is obvious that P{h) = 0 when­
ever A is a bounded function. Hence for each » = 1, 2, • • • , 0^P( / ) 
^P(g)/w.ThusP(/)=0. 

LEMMA 4. i e / 0i, 02, • • • be the characteristic functions of mutually 



i944] VECTOR LATTICES AND A PROBLEM IN MEASURE THEORY 721 

disjoint subsets of S and let <f> be the characteristic f unction of their union. 
Then if P is a non-negative linear functional on %, P ( 0 ) = P ( $ i ) 
+P(tf>2) + 

PROOF. By Lemma 1 there exists n0 such that for n>n0t P(<^w) a 0 . 
Since P f o - ^ - • . . - ^ « P f o j - p f o , ) - . . . ~P(0 n o ) we have 
only to show that P(<£—#1 — • • • — $no) = 0 . In other words we may 
confine ourselves to the case in which P ($ w )=0 for w = l, 2, • • • . 
For each 5 in 5 if <t>n(s) = 1 for some n = 1, 2, • • • let g(s) ~n; other­
wise let g(s)=0. Then for each w = l, 2, • • • , g —#i — 202— • • • 
— (» — l)0n_ièw(0— 0i— • • • — 0n-i). Hence P(g)gwP(<£). In other 
words 0 g P ( 0 ) £P(g)/n for » = 1, 2, • • • . Thus P(0) = 0 . 

We may now prove our equivalence theorem. 

THEOREM. Every bounded linear functional on % is a finite linear 
combination of point functionals if and only if there exists no countably 
additive measure a defined on all subsets of S which is zero at points, 
which takes on only the values zero and one and which does not vanish 
identically. 

PROOF. Suppose that a measure of the sort described does exist. 
Let ƒ be an arbitrary member of %. Using the fact that a takes on 
only one nonzero value, it is easy to prove the existence of a sequence 
lu ht • • • of closed intervals on the real line such that for each 
n = l, 2, • • • , I«2Jn+i, aiS-f-^In)) = 0 , and In is of length 1/(2*). 
Let X be the unique real number contained in all of the In's. Then it 
is clear that ƒ (s) =X except on a set of a measure zero. In other words 
for each ƒ in % there is a unique real number P(f) such that ƒ(s) = P ( / ) 
for "almost all" s. I t is obvious that P is a non-negative linear func­
tional on gf which is not identically zero and which does not vanish on 
characteristic functions of points. I t follows then that P is a bounded 
linear functional on % which is not a finite linear combination of point 
functionals. Conversely suppose that there exists a bounded linear 
functional on % which is not a finite linear combination of point func­
tionals. As we have already remarked we may suppose that this func­
tional is non-negative. Hence by Lemma 2 there exists a non-negative 
linear functional P on g which is not identically zero and which van­
ishes on characteristic functions of points. For each subset E of S let 
j3(£) = P($#) where </>E is the characteristic function of E. I t follows 
from Lemma 4 that j3 is a countably additive measure function and 
from Lemma 3 that j8 is not identically zero. Furthermore it is an 
easy consequence of Lemma 1 that S — SiUSJU • • • \JSn where each 
Si has the property that for each subset E of S either fi{EC\Si) = 0 or 
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j8(£n5i)=j8(5t) . For at least one ï0 = l, 2, • • • , n, j3(St-0)^0. Let 
a ( £ ) =p(Er\SiQ)/p(SiQ) for each subset £ of S. Then it is easily veri­
fied that a is a measure function with all properties listed in the state­
ment of the theorem. 

Using Ulam's results on two-valued measures we deduce the follow­
ing corollary. 

COROLLARY. Let Co = No and for each n — 1 , 2, • • • let C» = 2C»-*. 
Let D = C0+C1+ • * * • Then whenever the cardinal of 5 is less than 
D every bounded linear functional on % is a finite linear combination 
of point f unctionals. 
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