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1. Introduction. G. Humbert has discussed, in a series of brief 
notes,1 a certain class of entire functions with interesting arithmetical 
properties. These functions are defined, in an essentially unique man­
ner, by certain functional equations. The Fourier series representa­
tions of the solutions of these equations are similar in form to those 
for the elliptic functions snuy cnu, dnu, and so on. They differ from 
these, however, in that their domain of validity extends throughout 
the entire complex plane (Z* excluded) and moreover, in that their 
arithmetized forms involve incomplete numerical functions of the di­
visors of an integer. 

In the present paper we extend somewhat the results of Humbert 
and obtain a relation between his functions and certain pseudo-
periodic functions discussed elsewhere by the writer.2 This relation 
is, in effect, embodied in a series of twelve identities; these are of 
some interest in that their arithmetical equivalents (paraphrases) are 
relatively simple and involve partitions related to the representa­
tions of an integer as the sum of five squares. 

I t is also pointed out that as an immediate consequence of the ana­
lytical form of Humber t s functions, it is possible to deduce a series 
of relations between the greatest integer function E(x) and certain 
incomplete numerical functions of the divisors of an integer. 

2. The functional equations. In what follows the notation is that 
ordinarily used in the theory of the elliptic theta functions.8 The 
period TTT is such that 0 <a rg r <w. 

The set of functional equations considered has the form 

Kz + TT) = ( - l)a*(s), 
( A ) h(z + TT) = (- l)hh(z) + F%(z)9 

where a, b take the values zero or unity, and Fif(z), to be defined 
presently, is an expression which involves the theta function âa(z). 

Presented to the Society, November 26, 1938; received by the editors December 
13, 1943. 

1 G. Humbert, Sur quelques fonctions numériques remarquables, C. R. Acad. Sci. 
Paris vol. 158 (1914) pp. 220, 294, and 1841; vol. 163 (1916) p. 412. 

* M. A. Basoco, Amer. J. Math. vol. 54 (1932) pp. 242-252. 
8 Whittaker and Watson, Modem analysis, Cambridge. 
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We shall denote the integral functions satisfying these equations by 
the symbol H$(z). These are readily found on assuming series solu­
tions of the form 

Hab (z) » X) A^e . 

These solutions, for (a, &) = (1, 0), (0, 1) and (1, 1), are unique; for 
(a, b) = (0, 0), the solution is completely determined to within an ad­
ditive constant. For suppose that for a given (a, 6) there exist two 
distinct solutions. Denote by D(z) their difference ; this would likewise 
be an integral function and would satisfy periodicity relations of the 
form 

D(Z + 7T) = ( - 1)«D(Z), 

D(z + irr) = ( - l)bD(z). 

The function D(z) is therefore an elliptic function, reducing by Liou-
ville's theorem to a constant. From (A) it follows easily that this 
constant vanishes except for the case (a, 6) = (0, 0), when it remains 
undetermined. In this case, we have selected the solution which van­
ishes for 2 = 0. 

3. The functions F$(z). Let X and /x be the multipliers associated 
with the reduction of the theta functions of argument Z+TTT/2 and 
Z+TTT respectively, so that 

where 
q s= exp TTÎT, 0 < arg r < w. 

The functions F^(z) are defined as follows: 

F§>\z) « t ( l - ix)ûo(z) - 2i; Fn\z) = 2tX*0(«). 

Fol\z) = 2 i ( - 1 + tX*i(s)); Fn\z) « i(l + M)*i(«)f 
^2) 

Foo(z) - 2 » ( - 1+X*,(*)); 

Fm\*) = *(1 + n)Mz) - 2»; 

Foi0>(»)-i(l+M)*o(«); 
F S ' C O - 2<X*1(«); 
FÓ^z) - 2k»t(z); 

Fol\z) = i(l - M ) ^ S ( 2 ) ; 

e functions satisfy the condition 

PS® -
F£\Z) -

Firw* 
F « («) = 
*« « = 
Fll\z) -

L 

• »( l - *»)*»(*), 

= 2X0,(8), 

= 2X#o(z), 
= - »(1 - n)Hz 

= »(1 + M)«?2(z), 

= 2M?3(Z)-
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Fil\z + T) = ( - D'FÏViz), 

which is implied by equations (A). 

4. The solutions H$(z). The procedure indicated in §2 yields the 
solutions H$(z) of equations (A) corresponding to the choices of 
F$(z) listed in §3. These solutions are valid for all values of s. We 
thus obtain : 

(4.1) #oo (a) = 2 2 — s i n 2f», 
<») 1 ~ ?2w 

(4.2) ffoo (*) = 4 ^ — sin 2nz, 
c») 1 ~ ?2w 

(4.3) ffii («) = 2 2 — s i n 2"*> 
o 1 + ?2w 

(4.4) Hol\z) = 1 + 4 2 — cos 2nz, 
<»> l + q2n 

( 3 ) g(m2+2m)/4 

(4.5) Jîio (a) = 4 2 sin w2» 
(m) 1 ~ qm 

( 2 ) ^ ? (m*+4m)/4 + gm*/4 

(4.6) #10 (z) = 2 2 ~ sin w*> 

( S ) g(m 2+2m)/4 

(4.7) # n (z) = 4 2 " c o s mz> 
«o 1 + qm 

m a (m 2 +4m) /4 _ ( ,m
2 /4 

(4.8) Hii (a) = 2 2 * sin m*. 
(*) 1 + Qm 

In the preceding the index of summation n ranges over all the positive 
integers while the index m ranges over the odd positive integers. 

The remaining functions H$(z) (c = 0, 1) may be obtained from the 
above results upon replacing z by Z+TT/2. 

5. Arithmetized form. In this section we list the arithmetical forms 
of the trigonometric series (4.1) to (4.8). The following notation is 
used: n denotes an arbitrary positive integer; m is an arbitrary posi­
tive odd integer; a is a positive integer of the form 4fe+l and /3 is 
one of the form 4fe+3; 2 ' refers to the conjugate divisors (d, d) of n 
and (t, T) of a or (3 such that ô <d, r<t; e(n) is one or zero according 
as n is or is not the square of an integer, 
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(5.1) Hol\z) = 2j^g\(n) sin 2n'\ + 4 £ q*{ £ ' sin 2ôz}, 
(w) (w) ( ô - r f S 0 , m o d 2 ) . 

(5.2) HZ\Z) = 4 £ / { Z ' sin 2ôs}, ( J - i a l , mod 2). 
(n) 

„ ( 3 ) . x ^-n « / N . -, 1/2 
#01 W = — 2 ZuQ € W s m 2# 2 

(5.3) _ n ( r <>. <<*--S)/2 . 1 

~ 4 2^? | L ( " !) sin2&}, 
(w) ( î - J s O , mod 2). 

(5.4) HS } («) = 1 + 4 E q{ £ ' ( - i r " ' 7 ' cos 2ôs}, 
<w) ( 8 - d s a l,mod2). 

(5.5) Fi(o)(.) = 4 X / / 4 { E , s i n r . } , 

(5.6) ffio (*) = 2]£ / e(a)sina 2 + 4 ^ / { ]£ ' sinrs}, 

(5.7) FffW - 4 E / / 4 { £ ' ( - l) l t"T"2) /4 cos rz), 

r j ( ï ) / \ o V* a / 4 / \ • 1 / 2 

#11 w == - 2 2 ^ 9 €(a) sm a 2 

- 4 L ? { £ ( - 1 ) sinr*}. 
(«) 

The remaining eight functions will not be listed explicitly; they can 
be obtained quite readily from what precedes. 

6. Identities. In a former paper4 the writer obtained the trigono­
metric developments for the sixteen theta quotients of the form 

Qafiy(xf y) 35 &£ • 
*J(*)*7(y) 

A comparison of these expansions (with (x, y) = (0, 2) and $?* 1) with 
those given in the preceding sections leads to the following identities : 

(6.1) - «!(.) EV{ E ' ( - D( (<* + 5) sinM.} 
<n) ( J - d - l , m o d 2 ) , 

*i(*)Hn(p) = - t t ó i ( z ) 
(6.2) - 4*,(») E / { £ ' ( - l) (^ + S)sin2ôZ} 

(n) ( 8 - < * • ! , mod 2), 
4 Loc. cit. 
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(6.3) âj(z)Hll\z) = - êlûMz) + 2 t f , ( * )£ / "{E 'C ' + r) cosTZ}> 

- 2£8(*) 2 ^ ? { 2^ ( - 1) (f + r) sin T2}, 

»S(z)Hn\z) = - t ? o 2 4 t ó 

- 2#8(») 2^ ? { 2 J ( - 1) (* + T) c o s t z \ » 
/Q\ 2 2 

êo'(z)Hio\z) = *i*«*i(s) 
- 2^0(2) 2^ g { ±j(- 1) (/ + r) sin T0}, 

(0) 
/ i \ 2 2 

*i' (z)Hio(z) = #»Mo(*) 
(6.7) - 2Uz) S j " 4 { ( - 1)(al' -1,/2e(a)«1/2 sin «V2

Z 

+ E ' ( - l ) < r " 1 > / 2 « + - )s inr 2 }, 

* 1 (2)ffîî>(z) = **&«(«) 
(6.8) - » , ( . ) E *"*{(- D ^ ' e W a 1 ' 2 sin «1/2

Z 

<a) + E ' ( - l ) < J + T " 2 ) / V + T)sinTZ}, 

*,' (Z)HII\Z) = - êlêlMz) + 2*,(«)2 q"*{<a)a" cos «1/2
Z 

(6-9) ("' ^ 
+ Z/(* + T) COSTZ}, 

*,' (z)Hu\z) = - ûlêlêoiz) + 2#,(*)2 ?a/4{e(«)a1/2 cos «1/2
Z 

+ Z ) ( - 1 ) (< + T)COSTZ}, 

(0) 2 2 i 

«?o'(Z)#oi (2) = êo&Mz) ~ Mz)U(z) 
(6.11) 

- 4 Z ?"{ Z ' ( - D(<i+5)/2(rf + «) Cos 2SZ}} 

(S - rf E 0, mod 2), 

#i(*)Hn(z) êlâlê0(z) + *i(s){*(*) 
(6.12) 

- 4 Z ?"{ E ' ( - 1) ̂ ' V + «) cos 2SZ} 1 
(n) J 

( « - J s 0,mod2), 
where 
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yp(z) = 1 — 4 ^ (— l)nngn cos 2nz 

and 
*(*) = *(* + r/2). 

The above yield, therefore, identities for the product âj (z)H$(z), 
the case (a, Z>) = (0, 0) being, however, excluded. This is because in 
the expansions for the functions ®apy(x, y) with /3 = 1 it is not possible 
to set # = 0, this point being a pole of these functions. 

7. Paraphrases. The preceding set of identities may be paraphrased5 

into rather simple arithmetical equivalents. I t is of interest to note 
that the partitions involved in these paraphrases refer to the repre­
sentations of numbers in certain linear forms as the sum of five 
squares. 

The notation used is as follows: a, fi, m, mi, n, ni, t, r, d, ô are posi­
tive integers ; a ss 1 and j3==3 (mod 4) while m, mi, r are odd; n and ni 
are unrestricted. The sets of conjugate divisors (d, ô) and (/, r ) are 
subject to the condition b<d and T<t; further restrictions on these 
divisors will be indicated as needed, h, Zi are unrestricted integers, 
positive, negative, or zero, while /x, tti^O are odd; the Wi^O, Wi are 
even integers, positive, negative, or zero. Moreover, e(n) == 1 or 0 ac­
cording as n is or is not the square of an integer and T(# ) = 1 or 0 
accordingly as n is or is not the sum of two integral squares. Finally, 
the f unctions ƒ (#) and g(x) are quite arbitrary except that they must 
be respectively even and odd and be well defined for integral values 
of the argument. 

The partitions of the integers a, /3, 2m, n which appear in our re­
sults are as follows : 

2 2 2 2 2 2 

(i) a = Xi + Wi + W2 + Wz + WA = M + Add 
(ô ~ d s l,mod 2), 

2 2 2 2 2 2 

(j) $ = xi + x2 + xz + wi + W2 = 4A + tr, 
2 2 2 2 2 2 2 2 

(k) 2m = xi + #2 + wi + w% + wz = M + tr *= p + mi, 
2 2 2 2 2 2 2 2 

(/) n = z\ + z2 + zz + Zi + ZB = h + dô = h + #i 
( J - ( J B 0,mod2). 

The arithmetical equivalents of (6.1) to (6.12) follow in the same 
order; the necessary partition is denoted by placing the proper letter 
i, j , k or I under the first 2 J . In the relations (7.1) and (7.2) the di­
visors (d, ô) are of opposite parity while in (7.11) and (7.12) they have 
like parity. 

« E. T. Bell, Trans. Amer. Math. Soc. vol. 22 (1921) pp. 1-39 and 198-219, 
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£ ( _ 1)<«***>/«/(*,) = 2 e ( a ) a 1 " ( - 1 ) («l"-i)/2/(«l/2) 

(7 1) (i) 

^ ' +4i:'(-l)<d+5+")'s(rf+5-M)/(25+M), 
Ç ( _ l ) < t h » f « i - i > / i f (*,) = 2e(«)a1'2g(a1/2) 

(7.2) (<) _ 

(7.3) T, fM^2'Z'(t+r-4k)f(r+2h), 
</) 
D(-l)(ttl+W2+Il-1)/2g(*i) = 2Z'(-l)(<-T-2)/4(<+r-4/t)g(r+2A), 

(7.4) y) 
(7.5) E (-l) ( w i^ a ) /y(*i) = - 2 E ' ( - l ) ( ' + ^ 4 A ) / 2 ( H - T - U)f(T+2h), 

(7.6) £ (-l)<*i-1>/2g(*1) = 2E' ( - l ) (^ 2*- 1 ) / 2 (H-r-4%(r+2a) , 
< j ) 

E (-Dwl/2/(wi) = 2E'(-1)(^") /2(<+r-2,x)/(T+M) 
(7 7) w 

+2X(2w) E (-1) (mi+M)/2(wi-M)/(wi+M), 
^(_l)(»1+«2)/2/(W3) = 2X)/(-l)(<+T+W/4(;+r-2M)/(T+M) 
(*) 

+2X(2»ï)E (~ 1 ) ( - H » ) / , ( » I - M ) / ( » » I + P 

S/(« ' i ) = 2E,(<+r-2M)/(r+M)+2X(2w)E('»i-M)/(»»i+/i), 

(7.9) W 

2 (_l)(^+»a+«»,)/2/-(Wl) = 2^ ' (_l ) («-r) /4(< + T_2M ) / (T+/ | ) 

+2X(2m) 

E ( -1) "*"ƒ(*«) = /(0)+2«(») ( -1) "'"fin"*) 

(7.10) (W 

+2X(2m) E («i -tif(m+lj), 

(7 11) <0 

+4X(»)E(-l)*+"1(*-»i)/(*+»i) 
-4E'(-l)( , i+H2A)/2(^+5-2A)/(5+A), 

E (-l)'l+'*"f(zi) =/(0)+2É(«)/(Wi/S) 

(7.12)(0 

+4X(»)E(A-«i)/(A+Wl) 

-4E'(-l)(d~"8)/2(<H-5-2fc)/(5+A). 

The preceding formulae with f(x) = 1 yield enumerations relative to 
the number of representations of a number as the sum of five squares. 
The most interesting results are those deduced from (7.3) and (7.9). 
We thus obtain the following theorems. 
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THEOREM A. If (3^3, mod 4, and x, y, z^O are odd while u, v are 
even integers, positive, negative, or zero, then 

N[p = x2 + y2 + z2 + u2 + v2] = 2<j>(&) + 4 £ >̂(j8 - 4f2), 
(r) 

where r = 1, 2, 3, • • • , [|81/2/2], and cj>(n) is the sum of the positive in­
tegral divisors of n. 

THEOREM B. If w = l, mod 2, and x, y^O are odd while u, v, w are 
even and positive, negative, or zero, then 

N[2m = x2 + y2 + u2 + v2 + w2] = 4 ^ *(*» - s2), 

w/^re 5= 1, 3, 5, 7, • • • , [(2m)112], provided 2m is not representable as 
the sum of two squares. If, however, 2m is so representable, the quantity 
G(2m) must be added to the preceding sum, where G(2m)=4^2x, the sum 
being extended over all solutions of 2m = x2+y2, x, y>0 and odd. </>(n) 
is as in the preceding theorem. 

8. Application to the function E(x). The analytical form of the 
functions defined by (4.1) to (4.8) suggests the application of a device 
due to Her mi te,6 which yields identities involving the greatest integer 
function E(x). Hermite's method depends on the following generating 
functions: 

ub _ /n + a — b\ 
= ]££( )un; 

(1 — u)(l - u°) (n) \ a / 
ub — /n + a — by /n + a- b\ 

(1 -U)(l + Ua) (n) 

where a, b are positive integers and 

Ei(x) = E(2x) - 2E(x) = E(x + 1/2) - E(x). 

The following two relations are typical of the set of sixteen which 
may be deduced from our results. Let F(z) be an arbitrary function, 
r a positive integer and (d, ô) conjugate integral divisors of r. Define 
P\(x, r) and P*(x, r) by the following: 

Px(x, r) = e(r)F(2r1i2x) + 2j^'F(2ôn) (r = dô, d - 2 SE 0, mod 2), 

P*(x, r) = X M 2 M (r = dôt d - Ô ss 1, mod 2). 

6 Hermite, Acta Math. vol. 5 (1884-1885) pp. 297-330; J. Reine Angew. Math, 
vol. 100 (1887) pp. 51-65; Oeuvres, vol. 5, pp. 151-159. See also a paper by the present 
writer in Bull. Amer. Math. Soc. vol. 42 (1936) pp. 720-726. 
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Let n be an arbitrary fixed positive integer; then 

(8.1) £ Pi(*> r) = 2 Z M—~ )F(2sx) + £ H2sx)t 
r=l (a) \ 2S / s=«i 

(8.2) £ P«(*f r) = Z £ ^ + * ~ * V(2**), 
r»l («) \ 2s / 

where s ranges over the values s = l, 2, 3, • • • so long as the argu­
ment in E(x) is greater than or equal to 1. 

In particular, let F(z)=zk, where k is a positive integer. Then the 
preceding reduce to the following : 

(8.3) Z * i « = 2 2 > ( W + S,», 
r=l (s) \ S / s==l 

* _ (n + s - s2\ 
(SA) E l 2 ( r ) = £ E ( 1 )**, 

where, 

Xi(r) = efâr1'* + 2 £ ' 8 * (r = tf8, 8 < d, 8 - d m 0, mod 2), 

* i (0 = 2 > * (r = <«, 8 < <*, 8 - <J s 1, mod 2). 

These results follow from (4.1), (4.2) and their equivalents (5.1) and 
(5.2) respectively. 
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