
THE EXTREMALS OF TWO INVARIANT INTEGRALS 

M. L. M A C Q U E E N 

1. Introduction. In a recent paper, Wilkins shows [l, p. 175J,1 

among other things, that at a point of an analytic surface in ordinary 
projective space a general canonical line of the first kind may be char­
acterized in terms of the cusp-axes of the two families of hypergeodes-
ics which are the extremals of a certain pair of invariant integrals. 

In this note we introduce two invariant integrals which do not 
differ essentially from those employed by Wilkins. At each point of 
the surface, a quadric cone called the cusp-axis cone and its dual called 
the flex-ray conic are defined in terms of the cusp-axes and flex-rays, 
respectively, of the hypergeodesics which are the extremals of these 
integrals. The equations of these loci are derived and some of their 
properties are briefly studied. 

If the four homogeneous projective coordinates x of a variable 
point on an analytic non-ruled surface S in ordinary space are given 
as analytic functions of two independent variables w, v, and if the 
parametric net on S is the asymptotic net, then the functions x are 
solutions of a system of differential equations which may be assumed 
to be reduced to Fubini's canonical form 

(1.1) Xuu = px + euxu + fiXv, %w = qx + yxu + 0vxv (0 =* log fiy). 

It will be recalled that two lines l%(at 6), h(a, b) are reciprocal lines 
[2, p. 150] at a point x of a surface if the line h(a, b) joins the point x 
and the point y defined by 

(1.2) y = — axu — bxv + xuv 

and the line h(a, b) joins the points p, <r defined by placing 

(1.3) p = xu — bx, a = xv — ax, 

where a, b are scalar functions of w, v. 
Moreover, two reciprocal lines /i(a, &), h(a, b) are canonical lines 

of the first and second kind respectively in case 

(1.4) < * = - * & b = - k<f>, 

where k is a constant and 

0 - (log Py%, * - (log p*y)v. 
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I t will be assumed that 0^5**O, so that the surface under consideration 
is not a coincidence surface. Canonical lines of the first kind lie in the 
canonical plane whose local equation is 

(1.5) <t>x2 — ypxz = 0 , 

when referred to the tetrahedron of reference Xy Xy,) Xyy Xuv* The canoni­
cal plane intersects the tangent plane X\ = 0 in the first canonical tan­
gent t\ at the point x of the surface. Canonical lines of the second kind 
lie in the tangent plane and pass through the canonical point 

(1.6) (0, * , - * , ( > ) . 

The second canonical tangent t2i which joins the point x to the canon­
ical point, has the equations 

(1.7) <j>x2 + \p%z = 0 , xt = 0 . 

2. The extremals of two invariant integrals. The differential equa­
tion of the extremals of the invariant integral 

(2.1) f pv-«)izya+«)iH'ndu (^0), 
* wo 

where n is a constant, is found to be 

(2.2) v" = Btf + CV2, 

in which accents indicate total differentiation with respect to u and 
the coefficients Bx and Ci are defined by 

(2.3) 3(1 - n)B1 = (log /32~V+W)W, - 2nd = (log /32~V+W)*. 

These extremals are hypergeodesics whose cusp-axis is the line 
h(p>u h) for which 

ai - ((2n - l)/6n)f « - krf, 

h = ((2n - l) /6(» - 1))0 = - fat. 

Similarly, the differential equation of the extremals of the invariant 
integral 

(2.5) f V l+«) /3 7 (2 -nWl-n^ (» 5* 1) 

is given by 

(2.6) z>" - Brf + Crf\ 

where 

(2.7) 3iiBj - (log pl+ny2~n)u, 3(» - 1)C2 « (log 01+V~W)*. 
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Therefore these extremals are hypergeodesics whose cusp-axis is the 
line h(a2, £2) for which 

a2 - ((2» - l) /6(» - 1))* = - ktf, 

b2=* ((2n - l)/6n)4> = - kvfi. 

These results can be used to obtain the following theorem, a part of 
which is similar to Theorem 4.1 in the paper of Wilkins [l, p. 175]. 

THEOREM 2.1. The extremals of the invariant integrals (2.1), (2.5) are 
hypergeodesics whose cusp-axes determine the plane 

(2.9) 4>x2 + $xz - ((1 - 2n)2/6n(l - »))#a?4 = 0. 

This plane intersects the tangent plane #4 = 0 in the second canonical 
tangent and intersects the canonical plane in the canonical line h(k) for 
which 

(2.10) k = (1 - 2»)V12»(1 - n). 

Moreover, the plane which is determined by the cusp-axis of the hyper­
geodesics (2.2) and the v-tangent at the point x intersects the plane which 
is determined by the cusp-axis of the hypergeodesics (2.6) and the u-tan-
gent at the point x in the canonical line h(k) for which 

(2.11) k = (1 - 2n)/6n. 

Finally, the cusp-axis of the hypergeodesics (2.2) and the u-tangent 
at the point x determine a plane which intersects the plane determined by 
the cusp-axis of the hypergeodesics (2.6) and the v-tangent in the canoni­
cal line h(k) for which 

(2.12) * « (1 - 2 » ) / 6 ( * - 1). 

Each of the canonical lines thus determined may, by a proper selection 
of the constant n, be made to become any desired line of the first canonical 
pencil, except the first axis of Cech, 

I t may be remarked that, in case n = 2, the two cusp-axes are the 
scroll directrices of Sullivan. Application of the theorem leads to the 
canonical line h(k) for which &= —3/8, the first edge of Green, and 
the first directrix of Wilczynski. 

3. The cusp-axis cone. We now propose to find the locus of the 
cusp-axis of the extremals of each of the invariant integrals (2.1), 
(2.5), when n varies. For this purpose the cusp-axis of the extremals 
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of the integral (2.1) can be regarded as determined by the planes 
whose equations are 

(3.1) #3 — &2##4 = 0, X2 ~ kilf/Xt = 0 

and the cusp-axis of the extremals of the integral (2.5) by the planes 

(3.2) x$ — fa<l>Xi = 0, x2 — fa^x* = 0, 

where k\ and k2 are defined by 

(3.3) h = (1 - 2n)/6n, k2 = (1 - 2n)/6(n - 1). 

The locus of the cusp-axis (3.1), when n varies, is found by eliminat­
ing n from equations (3.1) to be a quadric cone which will be called 
the cusp-axis cone at the point x. The same cone is obtained as the 
lpcus of the cusp-axis (3.2). This result can be stated in the follow­
ing way: 

THEOREM 3.1. At a point of a surface, the locus of the cusp-axes of 
the extremals of the invariant integrals (2.1), (2.5), when n varies, is the 
cusp-axis cone whose equation is 

(3.4) 6x2xz + <t>x2x* + f̂f3#4 = 0. 

The vertex of this cone is, of course, the point x. It is evident that 
this cone is intersected by the tangent plane at the point x of the sur­
face in the asymptotic tangents through the point. Moreover, the 
polar line of the tangent plane x* = 0 with respect to this cone is the 
canonical line h(k) for which £=--1 /6 , namely, the first principal 
line of Fubini and Cech. The canonical plane intersects the cone (3.4) 
in the projective normal and in the first axis of Cech. The polar plane 
of the second canonical tangent with respect to the cone is the canoni­
cal plane. 

It is easy to establish the truth of the following statement: 

THEOREM 3.2. The cusp-axes of the extremals (2.2), (2.6) determine 
the plane (2.9) the polar line of which with respect to the cusp-axis cone 
is a canonical line k(k)for which 

(3.5) £ = - (l - 2n)2/6(2n2 - 2n + 1). 

In particular, let us consider the plane determined by the two scroll 
directrices of Sullivan. The polar line of this plane with respect to the 
cusp-axis cone is the canonical line l\(k) for which & = —3/10. 

The cusp-axis cone and any quadric of Darboux 
2 

(3.6) x2x% — XiXi + k&i = 0 (fa arbitrary) 
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intersect, besides in the asymptotic tangents at the point x, also in a 
residual conic which lies in the plane whose equation is 

(3.7) Xi + <£#2/6 + rpXs/6 — faxt = 0. 

This plane cuts the tangent plane at the point x of the surface in the 
canonical line h(k) for which k=> —1/6, namely, the reciprocal of the 
first principal line of Fubini and Cech. 

Furthermore, the cusp-axis cone and a principal quadric of Lane [3 ] 

(3.8) X2X3 + %*{— Sxi — <t>x2/2 — ypxz/2 + faxt) = 0 (£4 arbitrary) 

intersect, besides in the asymptotic tangents, also in a conic which lies 
in the plane 

(3.9) xi + 20*2/9 + 2^#3/9 - km/S = 0. 

This plane intersects the tangent plane #4 = 0 in the canonical line 
h(k) for which k = - 2/9. 

4. The flex-ray conic. Let us consider the envelope of the flex-rays 
of the extremals of the integrals (2.1), (2.5). The flex-ray of the family 
of hypergeodesics (2.2) is the reciprocal of the cusp-axis (3.1) and has 
the equations #4 = 0 and 

(4.1) xi + {{In - l)/6(rc - l))<t>x2 + {{2n - l)/6n)^Xz - 0. 

We find that the envelope of this line when n varies is a conic. The 
same conic is obtained as the envelope of the flex-rays of the hyper­
geodesics (2.6). This conic will be called the flex-ray conic of the two 
families of hypergeodesics (2.2), (2.6). The equations of the flex-ray 
conic can easily be obtained by setting equal to zero the discriminant 
of equation (4.1) regarded as a quadratic equation in n. The result 
is contained in the following theorem : 

THEOREM 4.1. At a point of a surface, the envelope of the flex-rays 
of the extremals of the two invariant integrals (2.1), (2.5), when n varies, 
is the flex-ray conic whose equations are #4 = 0 and 

(4.2) xi{x! + <t>x2/3 + ypxz/3) + {<f>x2 - ^8)2 /36 = 0. 

This conic lies in the tangent plane of the surface at the point x and 
touches the parametric tangents at the point x in the points 

(4.3) ( - 4/6, 1, 0, 0), ( - * / 6 f 0, 1, 0). 

The line joining these two points is the reciprocal of the first principal 
line of Fubini and Cech. This line may therefore be characterized by 
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the property that it is the polar line of the point x with respect to the 
flex-ray conic. 

The first canonical tangent intersects the flex-ray conic in the 
points whose local coordinates are 

(4.4) ( - 2 ^ / 3 , * , * , ( » , (0,iM,0). 

The second axis of Cech is tangent to the flex-ray conic at the first 
of the points (4.4), and the reciprocal of the projective normal is 
tangent to the conic a t the second of the points (4.4), Thus we find 
that the canonical point is the pole of the first canonical tangent with 
respect to the flex-ray conic. 

I t is easy to verify the following statement: 

THEOREM 4.2. The extremals of the two invariant integrals (2.1), (2.5) 
are hypergeodesics whose flex-rays pass through the point 

(4.5) ((1 - 2n)V6n(l - * ) ) # , *, *, 0 

which lies on the first canonical tangent. The harmonic conjugate of the 
first canonical tangent with respect to the two flex-rays through the point 
(4.5) is the canonical line k(k) for which k is defined by (2.10). 

The following result is an immediate consequence of the fact that 
the two flex-rays which pass through the point (4.5) are tangent to 
the flex-ray conic. 

THEOREM 4.3. The polar line of the point (4.5) with respect to the 
flex-ray conic is the canonical line k(k) for which k is defined by (3.5). 
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