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1. Introduction. In this paper we use the characterization given by 
Schur [ö]1 for analytic functions bounded in the unit circle together 
with the Stieltjes integral representation of F. Riesz [5] for analytic 
functions with positive real parts, to obtain a new proof of a theo­
rem [8] characterizing totally monotone sequences in terms of 
Stieltjes continued fractions. In the first place, Schur used an algo­
rithm which he called a "continued fraction-like" algorithm. We begin 
by constructing from this an actual continued fraction algorithm, and 
we then characterize the class of analytic functions bounded in the 
unit circle in terms of this continued fraction. Next, we obtain by a 
simple transformation a continued fraction for functions with positive 
real parts.2 This along with the above mentioned-theorem of F. Riesz 
leads to the theorem [8, pp. 165-166] that the sequence {cp} is totally 
monotone if and only if the power series c0 —CiZ+ctfP— • • • is the ex­
pansion of a continued fraction of the form 

g^ g&_ (1 - gl)g& (1 - g2)gzZ 

1 + 1 + 1 + 1 + • • • , 
where go^O, O ^ g ^ l , p = l, 2, 3, • • • . 

2. An actual continued fraction algorithm derived from the "con­
tinued fraction-like" algorithm of Schur. The continued fraction 
which we shall consider is as follows:8 

. (1 — a0â0)z 1 (1 — aiai)z 1 
(2 .1) a0-\ — — 

â0z •— ai + âiz — «2 + ' ' * > 

in which the ap axe complex constants with moduli not exceeding 
unity, and z is a complex variable. It will be convenient to suppose 
that if for some p, \ap\ =1 , then the continued fraction terminates 
with the first identically vanishing partial numerator. 

The pth approximant of (2.1) will be denoted by Ap(z)/Bp(z), 
where Ao(z)=a0i B0(z)~l, Ai(z)=z, Bi(z) = aoZ, and the other nu-

Received by the editors May 26, 1943. 
1 Numbers in brackets refer to the bibliography at the end of the paper. 
2 A special case of this was given in [9, p. 415]. 
8 Hamel [2] used a somewhat different continued fraction for the purpose of 

characterizing analytic functions bounded in the unit circle. He was obliged to use 
an unconventional definition of convergence. 
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merators and denominators are to be computed by means of the re­
cursion formulas 

A2p(z) = apA2p-i(z) — A2p-2(z), 

/o o\ S*P(*) = apB*p-i(z) — B2p-2(z), 
t2.2; ƒ> = 1, 2, 3, • • • . 

^2D+I(^) = âpzA2p(z) + (1 — apap)*4ip-.i(*), 
•B2JH-I(«) = âpzB2p(z) + (1 — apa,)*.Bjp_i(s), 

If we write 
p 

**p = I I (1 — <*<A), 
ga-o 

then we have the "determinant formulas" 

(2.3) A2p+1(z)B2p(z) - A2p(z)B2p+1(z) = ( - 1 ) ^ + 1 T T P , 

(2.4) A2p+2(z)B2p(z) - 42^(2)^2^+2(2;) = ( - l)pz*>+1Tpap+1. 

These may be readily derived from the recursion formulas. 
We shall now establish the following theorem: 

THEOREM A. A function f (z) is analytic and has modulus not greater 
than unity for \ z\ < 1 if and only if it is equal to a terminating continued 
fraction of the f or m (2.1), or is the limit f or \z\ < 1 of the sequence of 
even approximants of a nonterminating continued fraction of the form 
(2.1). 

PROOF. Except in the case where \a0\ = 1 , so that the continued 
fraction is equal to the constant a0, the moduli of the even approxi­
mants are all less than 1 for | s | < 1 . In fact, consider the linear frac­
tional transformation 

a — zw (1 — aa)z , 1 
t = t(w) = - = <* + — — > \a\ < 1 , 

1 — âzw âz — (l/w) 

of the w-plane into the /-plane, the transformation depending upon 
the parameter z. If \z\ < 1 , this transformation has the property that 
|*| < 1 for \w\ g l . The same is true of the product of two or more 
such transformations, and inasmuch as A2p(z)/B2p(z) is equal to the 
product of p such transformations applied to the point w—ap, we 
conclude tha t 

(2.5) \Al^L\<l for | z | < l t 
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In the case where (2.1) does not terminate, the sequence of even 
approximants converges uniformly for \z\ Sr for every positive con­
stant r less than 1, and represents an analytic function with modulus 
not greater than 1 for | z\ < 1 . In fact, from the determinant formula 
(2.4) we have the relation 

A2p+2(z) A2p(z) ( - lywpap+iz»*1 

(2.6; 
B2p+2(z) B2p{z) B2p+2(z)B2p(z) 

It is easy to see from the recursion formulas and (2.3), (2.4) that the 
denominators B2p(z) are different from zero for \z\ g 1. Hence, the ex­
pansion in ascending powers of z of the right member of (2.6) begins 
with the (p+l)th power, or a higher power, of z. Consequently, there 
exists a power series P(s) = cQ — CIZ+C2Z

2 — • • • which agrees term by 
term with the series for A2p(z)/B2p(z) for more and more terms as p 
is increased. Inasmuch as the coefficients in the expansion of this ra­
tional function do not exceed 1 in numerical value by virtue of (2.5), 
we conclude that | cp\ :g 1, p = 0, 1, 2, • • • , so that P(z) converges for 
\z\ < 1 . Moreover, if we put A2p(z)/B2p(z)=a0—diz+a2z

2 — • • • , 
then if Isl é r < l , 

(2.7) P(.) Â2ÀZ) 

B2p(z) 

2rp+i 

1 - r 
Z ( - i)*(*«-*«)*« 

from which we conclude that the sequence {A2p(z)/B2p(z)} converges 
uniformly to P{z) for \z\ =Sr<l; and from (2.5) it follows that 
\P(z)\ ^ l f o r \z\ <1 . 

We must now show, conversely, that if P{z) =Co — CiZ+ • • • is any 
function which is analytic and has modulus not greater than unity 
for \z\ <1 , then there exists a continued fraction of the form (2.1) 
such that (2.7) holds. To do this, we define the function Pi(z) by 

1 C0 - P(z) CX - C2Z + CZZ2 — • • • 
PiW = — z 1 — CQP(Z) 1 — C0(CQ — ciz + c2z

2 — • • • ) 

It is clear that |c0 | 2*1, being the value of P(0), and that if |c0 | =1 , 
then P(2)sc0 . In either case, we put a0 = c0. If we suppose that 
I Co I <1 , then, from the character of the above transformation and 
from Schwarz's lemma, it follows that Pi(z) is analytic and has modu­
lus not exceeding unity for \z\ < 1 . Take ai=Pi(0). If |«i| =1 , then 
Pi(3)2=0:1. If, however, |a i | <1 , we write 

l a ! - PiOO 

2 1 — dLiPxiz) 
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The function P2O3) is analytic and has modulus not greater than unity 
for \z\ < 1 . If |a2 | = 1, then P%(z)^a^ while if |OJ2| <1 , the process 
may be continued. In this way we obtain a finite or infinite sequence 
of functions 

(2.8) P0(«) = P(«), Pi(«), Pi(s), • • • , 

satisfying the relations 

1 ah - Pk 

(2.9) P H i W = " - — > 
z 1 — âjfcP* 

a/b — zPk+i 
Pk = r — > 

1 — &kZPh+l 

otk = Pib(O). 

From these we derive immediately a formal terminating or nontermi-
nating continued fraction expansion (2.1) for P(z). In the terminating 
case, the expansion is obviously valid, being in fact an identity. In 
the nonterminating case we have, for arbitrary k, the identity 

Pk(z) A 2k-i(?) — i4s*-a(s) 
P(«) = 

Pk(z)B2k-l(z) —* J52ft-2(2) 

so that, by (2.3), 

A2k-2(z) P*(*)(- l)*-1»»-!** 
P W -

P2*-2(S) ^2A;(Z) [P*(« )P l» - l (« ) - ^2fc~2(2;) ] 

From this it readily follows that the power series for A2k-2(z)/B2k-2(z) 
agrees term by term with P(z) for more and more terms as k is in­
creased, and consequently (2.7) holds. 

This completes the proof of Theorem A. This proof is the same as 
that of Schur [6], except that we have used the formulas and nota­
tion of continued fractions. It should be observed that the constants 
ap are uniquely determined by means of the given function P(z), 
either as an infinite sequence in the one case or as a finite sequence 
in the other. 

3. A continued fraction expansion for functions with positive real 
parts. A function k(z) is analytic and has a nonnegative real part for 
\z\ <1 and has the value 1 for 2 = 0 if and only if there exists a func­
tion P(z) which is analytic and has modulus not greater than 1 for 
\z\ <1 , such that 

1 + zP(z) 
(3.1) *(*)«- ~ 

1 — zP(z) 
This follows from Schwarz's lemma and the relation 
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1 -\zP(z)\2 

*(*(«)) -
I 1 - zP(z) |« 

We shall now obtain a continued fraction expansion for k(z). 
Let j3o = l> and determine ft, ft, • • • by the relations 

(3.2) pp+1 = - - ^ f , * = 0, 1, 2, • • • , 
1 — apPP 

where the ap are the numbers appearing in the continued fraction 
(2.1) for the function P(z) determined by (3.1). The numbers PP have 
moduli equal to 1, and form an infinite sequence or a finite sequence 
according as the sequence {ap} is infinite or finite, respectively. In­
stead of the functions (2.9) we now introduce functions hp(z) by 

1 - PPPp(z) 
(3.3) *,(*) = ' * , p = 0, 1, 2, . . • . 

1 + zppPp(z) 
By means of (2.9) and (3.2) we then find that 

(3.4) hp(z)=- l*~ "* , , , > # - 0 , 1 , 2 , . . . . 
Pp+i ~~ PpZ + \PP+I + otp)znp+i(z) 

Remembering that Po = l} we therefore have the formal continued 
fraction expansion : 

1 - P(z) _ Po-âo (ft + 5o)(ft-ai)g 

1 + «P(«) ~~ ft - ft* + ft - ft* 

(ft + 5i)(f t-5g)s 

+ ft - ft* + • • • * 
On multiplying both members of (3.5) by 2z/(l —s), adding 1 to both 
members, and then taking reciprocals, we have, using (3.1), 

y / N 1 + s 2(0o - a0)3 (ft + a0)(ft - ai)z 
k(z) = 

1 - Z + ft - PoZ + ft ~ PlZ 
(ft + 5 i ) ( f t -a 2 ) s 

+ ft ~ ft* + • • • " 
In case \ap\ <1 , p = 0, 1, 2, • • • , w —1, |a n | =1 , this continued frac­
tion terminates, the last partial quotient being equal to 

(ft + aw-i)(l ~ anpn)z ^ 

1 + CCnPnZ 



1944] CONTINUED FRACTIONS 115 

while if |<Xp| < 1 , £ = 0, 1, 2, • • • , the continued fraction does not 
terminate. In the first case, k(z) is of course equal to the continued 
fraction. In the second case, the continued fraction converges uni­
formly in the neighborhood of the origin by a well known theorem 
[4, p . 259]. An easy argument (cf. [9, pp. 415-416]) then shows that 
its value is k(z). 

If, in particular, k(z) is real when z is real, then i V = l , 
p = 0, 1, 2, • • • , the ap are real, and the continued fraction for k(z) 
can be thrown by means of an equivalence transformation into the 
form 

,„ „. , , . l + 2 l glW (1 - gl)g2W (1 ~ g2)gzW 
(3.7) k(z) = , 

1 - 2 1 + 1 + 1 + 1 + ' • • • 
where w = 4>z/(l-z)2 and ^ = ( l~a 3 ) _i) /2 , £ = 1, 2, 3, • • • . Thus 
O^gp^l, the continued fraction terminating in case equality holds 
for some value of p. 

It is readily seen that, conversely, if the ap are given, then the 
function k(z) given by (3.6) or (3.7) has the stated properties. We 
therefore have the following theorem : 

THEOREM B. A function k(z) is analytic and has a nonnegative real 
part for \z\ < 1 , and is equal to 1 for 2 = 0, if and only if it has a con-
tinued fraction expansion of the form (3.6), where the ap are constants 
with moduli not greater than 1, and the j3p are given in terms of the <xP by 
(3.2), /So being equal to 1. If k(z) is real when z is real, the continued 
fraction can be thrown into the form (3.7). 

4. A characterization of totally monotone sequences in terms of 
continued fractions. A sequence {cp} of real numbers is called totally 
monotone if all the differences Awcn = Cn—C»u6n+i+Cn,2Cn+2"-- • • • 
+ ( — l)mCmtmCn+m, m, w = 0, 1, 2, • • • , are nonnegative. If Co = 0, then 
Cp = 0 for /> = 1, 2, 3, • • • . Excepting in this trivial case, we may 
normalize by dividing every member of the sequence by c0, and may 
thus assume that c0 = 1. 

Hausdorff [3] showed that \cp} is totally monotone if and only if 
there exists a bounded nondecreasing function <j>(u) such that 

(4.1) Cp = f upd<t>(u)} p = 0, 1, 2, • • • . 
Jo 

This is equivalent to saying that 

J
11 d<t>(u) 

o 1 + wu 
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We now turn our attention to a theorem of F. Riesz [S] which, 
along with Theorem B, will furnish a characterization of totally 
monotone sequences in terms of continued fractions. 

THEOREM C. A junction k(z) is analytic and has a nonnegative real 
part for \z\ < 1 , and is equal to 1 for s = 0, if and only if it has an 
integral representation of the form 

/

* 2T eu + z 
da(t), 

o e%t — z 

where a(t) is a nondecreasing function such that a (0 )=0 , a(27r) = l . 
The function a{t) is determined uniquely to an additive constant at all 
its points of continuity by k(z). 

PROOF. Put 

k(z) = 1 + aiz + a2z
2 + • • • 

(4.4) -
= 1 + 2Li (*p + icp)r

p(co& pd + i sin pB), 

where z = reie, 0 O < l . Then, if 
oo 

u(r, 0) = dt(k(z)) = 1 + 2 rP(bp cos pd - cp sin pO) £ 0, 

we conclude that the function 

1 r* 
ar(t) = — I u(r, 6)d6, 0 g t g 2TT, 

2TT J 0 

is a nondecreasing function of /; and a r(0) = 0, av(27r) = l. Moreover, 

J«r(/) = 1, I 2 cos qtdar(t) = r«JQ, 
o J o 

ƒ. 
2 T 

— 2 sin qtdar{t) = f% 

Using a well known theorem, we may now determine a nondecreasing 
function a(t) such that a(0) = 0, a(27r) = l , and a sequence of values 
of r approaching 1, such that these equations go over into 

/

» 2 T /» 2ir 

da(t) = 1, 1 2 cos gtóa(0 = bq> 

o ft Jo ƒ. 
2 * 

— 2 sin qtda{t) = cfl. 
o 
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When these values are substituted in (4.4), that series may be written 
as the integral of a geometric series. On summing the latter, we obtain 
(4.3). The essential uniqueness of the function a(t) follows from the 
fact that an arbitrary continuous function can be approximated uni­
formly by a trigonometric polynomial [5, pp. 38-39]. 

Conversely, if a(t) is any bounded nondecreasing function such 
that ÛJ(0) =0, a(2ir) = 1, then one may verify at once that the function 
k(z) defined by (4.3) has the required properties. 

We now make in (4.3) the change of variable w=sin2 (t/2), and 
that formula becomes 

[«(1 -n)]1 '*-^*) 

d<f>(u) 

1 + wu 
1 giW (1 -

1 + 1 + 
- gl)g2W (1 -

1 + 
- g2)gzW 

1 

1 + z r1 d<t>(u) el 

(4.5) *(*) = I - iw I 
1 - 2 J 0 1 + w Jo 1 + wu 

where a(t)+a(2T-t)^\f/(u)y l - a ( 2 x - / ) = 0 ( t t ) , w=4z/(l-z)2. The 
function \p(u) is of bounded variation, and </>(u) is bounded and non-
decreasing: 0(0) =0, 0(1) = 1. The second integral in (4.5) vanishes, 
identically if and only if k(z) is real when z is real. On the other hand, 
k(z) is of this character if and only if it has an expansion of the form 
(3.7). On putting these two facts together we obtain the relation 

-
0 1 + wu 1 + I + 1 + 1 + 

Recalling now the definition of a totally monotone sequence, and 
the statement made concerning (4.2), we have the following theorem: 

THEOREM D. The sequence {cp} of real numbers, of which c0 = l, is 
totally monotone if and only if the power series c0—c\w+c2w

2 — • • • has 
a continued fraction expansion of the form 

(A 7Ï ^ glW (1 - gl)g2W (1 - g2)g*W 

1 + 1 + 1 + 1 H ' 

where Orggp^l, £ = 1, 2, 3, • • - , it being agreed that the continued 
fraction shall terminate in case some partial numerator vanishes 
identically. 

An interesting consequence of this theorem is the fact that there 
exists a sequence of polynomials Gi(gi), G2(gu g»), Gz(gu gt, gz), • • • , 
where Gp depends upon p variables, such that every totally monotone 
sequence with CQ = 1 can be represented parametrically in the form 

cp = Gp(gh g2, • • • , gP), p = 0, 1, 2, • • • (Go = 1), 

where 0^gp^lt /> = l, 2, 3, • • • . Conversely, every sequence of this 
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form is totally monotone. To obtain the polynomials Gv it is bu t 
necessary to observe that the power series expansion of (4.7) is the 
series CQ — CIW+CZW2+ • • • where the cp are polynomials in the gp. 
These may be most conveniently calculated by means of formulas 
given by Stieltjes [7, pp. 419-420]. We mention only that 

2 

(4.8) Gi(gi) = gi, G2(gi, g2) = gi(l - ft) + gig*. 

F. Riesz [5, p. 56] showed that a sequence {cp}> where c0 = l, is 
totally monotone if and only if for every n the point (c0f ci, • • • , cw-i) 
lies in the convex extension of the continuous curve given in para­
metric form by (1, uy u2, • • • , un~l), O ^ w ^ l . The polynomials Gp 

therefore furnish a parametric representation for the points of this 
convex set. This can be verified for w = 3 by means of (4.8). 

5. Continued fraction transformations. If the ap are real in (3.5), 
that relation may be written in the form 

Ï) ^ ~ *) * "" p 0 ) _ | i . (1 - gi)g2W (1 ~ ft)ftw 

2 1 + zP{z) ~~ 1 + 1 + 1 + • • • ' 

where gP = (l — ap-.i)/2, p = l, 2, 3, • • • , and w = 4z/(l—z)2. To indi­
cate the dependence of P(z) upon the ap we shall now write 
P(2) = (s; a0, ai , a2, • • • ). The following relations may be readily 
verified [6]: 

(5.2) — P(z) = (z; — a0, — au — «2, • • • )• 

(5.3) P( — z) = (z; ao, — ai, «2, — «3, • • • ), 

(5.4) P(zn) = (z; ao, 0, • • • , 0, ah 0, • • • , 0, «,, 0, • • • ), 

where 0 occurs n — 1 times between ap and ap+i. We observe that the 
effect of replacing ap-i by —ap^i is to replace gp by 1— gp; and that 
the effect of replacing cep_i by 0 is to replace gp by 1/2. These facts 
together with the preceding relations enable us to obtain a number of 
transformations of the continued fraction in (5.1). 

Let us denote the right member of (5.1) by F(w), and write 
F(w) = [w; git g2, gz, • • • ]. On replacing P(z) by — P(z) and ap_i by 
—ap_i, that is, gp by 1— gp> p — 1, 2, 3, • • • , we obtain at once the 
relation [8, p. 166; 9, p. 416] 

1 - F(w) r , 
( 5 ' 5 ) T~t—^7~T = I»; 1 - ft> 1 - ft. 1 - ft. • " J-

1 + wF(w) 
Similarly, on replacing P(z) by P(—z) and ap by ( — l)pap we get 
[ l . p . 1 9 1 ] 
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(5.6) 1 - F ( - w/(l + w)) = [w; 1 - gh gtf 1 - g«, g4, • • • ]. 

Using (5.4), replacing/(s) by f(zn) in (5.1), we obtain a relation of the 
form 

F(Un(w)) 
(5.7) Fn(ze;) + TFn(ze;)F(i7n(îe;)) 

= [w; gi, 1/2, • • • , 1/2, g2, 1/2, • • • , 1/2, g,, 1/2, • • • ], 

where 1/2 appears n — 1 times in each place, and where Un(w), 
Vn(w), Wn(w) are rational functions of w given by 

4:Wn 

Tj (w) = , 
{((i + wyi* + i)n - ((i + wyi* - i H 2 

{((1 + w)1/2 + l)n - ((1 + w)1'2 - l)*}2 

Vn(w) = (1 + W)1/2 

((1 + w)112 + l)2n - ((1 + w)1'2 - l)2w 

W{((1 + 2^)1/2 + I)""1 - ((1 + w)1/2 - l)»-1}2 

2wn-l - {((1 + w)1 '* + 1)2»~1 - ((1 + W) l /I - l ) 2n - l | 

Here, that branch of (l+w)1 /2 is to be taken which reduces to 1 for 
ze/ = 0. 
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