LAMBERT SUMMABILITY OF ORTHOGONAL SERIES

RICHARD BELLMAN

If we define Lambert summability of a series, $\sum_{1}^{\infty} a_n$, in terms of the existence of the limit

(1)
$$L(a_n) = \lim_{x \to 1-0} (1-x) \sum_{1}^{\infty} \frac{n a_n x^n}{1-x^n}$$

we have, by a well known theorem of Hardy-Littlewood [1], that $C(a_n) \to L(a_n) \to A(a_n)$; $C(a_n)$, $A(a_n)$ are respectively the Cesàro and Abel means of the series $\sum_{n=0}^{\infty} a_n$.

The proof of $C(a_n) \to L(a_n)$ is elementary in nature, but the proof of $L(a_n) \to A(a_n)$ requires the prime number theorem, and conversely the theorem $L(a_n) \to A(a_n)$ implies the prime number theorem.

For that reason, it is perhaps interesting to show that for orthogonal series of functions f(x), belonging to L^2 , the inclusion of $L(a_n)$ between $C(a_n)$ and $A(a_n)$ follows in completely elementary fashion.

That $C(a_n) \sim A(a_n)$ for orthogonal series of L^2 is a known result of Kaczmarz [2]. Hence it is sufficient to show that $L(a_n) \rightarrow C(a_n)$. In addition, it is further known that $C(a_n)$ is equivalent to the convergence of the partial sums of the orthogonal series $s_{2^n}(\theta) = \sum_{1}^{2^n} a_k \phi_k(\theta)$ [3] Therefore, finally, it comes to showing that Lambert summability implies the convergence of the partial sums $s_{2^n}(\theta)$, in order to prove the theorem.

Let $f(\theta) \subset L^2(a, b)$, $a_n = \int_a^b f(\theta) \phi_n(\theta) d\theta$; where $(\phi_n(\theta))$ is an orthonormal sequence in (a, b), $s_n(\theta) = \sum_{n=1}^n a_n \phi_n(\theta)$.

Write, where x is $1-1/2^n$,

(2)
$$U_n(\theta) = \sum_{k=1}^{\infty} k a_k \phi_k(\theta) \frac{(1-x)x^k}{1-x^k} - s_{2^n}(\theta) = T_n(\theta) + V_n(\theta)$$

where

(3)
$$T_n(\theta) = \sum_{k=1}^{2^n} a_k \phi_k(\theta) \left(\frac{k(1-x)x^k}{1-x^k} - 1 \right),$$

(4)
$$V_n(\theta) = \sum_{2^n+1}^{\infty} k a_k \phi_k(\theta) \frac{(1-x)x^k}{1-x^k}.$$

If $\lim_{n\to\infty} U_n(\theta) = 0$, the result is proven. To that end, consider the

Received by the editors June 10, 1943.

¹ Numbers in brackets refer to the references listed at the end of the paper.

series

(5)
$$\sum_{1}^{\infty} \left[U_n(\theta) \right]^2.$$

To prove convergence almost everywhere in θ , it is sufficient to show

(6)
$$\sum_{n=1}^{\infty} \int_{a}^{b} \left[U_{n}(\theta) \right]^{2} d\theta < \infty.$$

We have

(7)
$$\sum_{n} \int_{a}^{b} \left[U_{n}(\theta) \right]^{2} d\theta \leq 2 \sum_{n} \int_{a}^{b} \left[T_{n}(\theta) \right]^{2} d\theta + 2 \sum_{n} \int_{a}^{b} \left[V_{n}(\theta) \right]^{2} d\theta.$$

Let us consider the convergence of each series separately.

(8)
$$\sum_{n} \int_{a}^{b} \left[T_{n}(\theta) \right]^{2} d\theta = \sum_{n} \int_{a}^{b} \left(\sum_{1}^{2n} a_{k} \phi_{k}(\theta) \left(\frac{k(1-x)x^{k}}{1-x^{k}} - 1 \right) \right)^{2} d\theta$$
$$= \sum_{n} \left(\sum_{1}^{2n} a_{k}^{2} \left(\frac{k(1-x)x^{k}}{1-x^{k}} - 1 \right)^{2} \right)$$

where the x appearing in $\sum_{1}^{2^{n}}$ is $1-1/2^{n}$, $n \ge 1$.

Now

(9)
$$1 - x^k \le k(1 - x), \qquad 0 \le x \le 1,$$

(10)
$$1 - x^k \ge 1 - \frac{k(1-x)x^k}{1-x^k} \ge 0,$$

so that

$$(11) \sum_{n}^{b} \int_{a}^{b} [T_{n}(\theta)]^{2} d\theta \leq \sum_{n}^{2} \sum_{1}^{n} a_{k}^{2} (1-x^{k})^{2} \leq \sum_{n}^{2} \sum_{1}^{2^{n}} k^{2} a_{k}^{2} (1-x)^{2}$$

$$\leq \sum_{n}^{b} \frac{1}{2^{2n}} \sum_{1}^{2^{n}} k^{2} a_{k}^{2} \leq \sum_{k}^{b} a_{k}^{2} k^{2} \sum_{n \geq \log_{k} k}^{2^{n}} 2^{-2^{n}} \leq A \sum_{k}^{b} a_{k}^{2}$$

and $\sum_{k} a_{k}^{2} < \infty$ since $f(x) \subset L^{2}(a, b)$. Now for the second series $\sum_{n} \int_{a}^{b} [V_{n}(\theta)]^{2} d\theta$:

(12)
$$\sum_{n} \int_{a}^{b} \left[V_{n}(\theta) \right]^{2} d\theta = \sum_{n} \int_{a}^{b} \left(\sum_{2^{n}+1}^{\infty} a_{k} \phi_{k}(\theta) \frac{k(1-x)x^{k}}{1-x^{k}} \right)^{2} d\theta$$
$$= \sum_{n} \left\{ \sum_{2^{n}+1}^{\infty} k^{2} a_{k}^{2} \frac{(1-x)^{2}x^{2^{k}}}{(1-x^{k})^{2}} \right\}$$

where the x appearing in $\sum_{2^n+1}^{\infty}$ is $1-1/2^n$, $n \ge 1$. Since $(1-2^{-n})^k$ is a decreasing function of k,

(13)
$$\sum_{n=2^{n}+1}^{\infty} k^{2} a_{k}^{2} \frac{(1-x)^{2} x^{2k}}{(1-x^{k})^{2}} \\ \leq \sum_{n=1}^{\infty} \frac{1}{1-(1-2^{-n})^{2^{n}}} \sum_{2^{n}+1}^{\infty} k^{2} a_{k}^{2} (1-x)^{2} x^{2k} \\ \leq A \sum_{n=2^{n}+1}^{\infty} k^{2} a_{k}^{2} (1-x)^{2} x^{2k}.$$

We can majorize $k^2 \sum_{1}^{\infty} 2^{-2n} (1-2^{-n})^{2k}$ by the integral

(14)
$$k^{2} \int_{0}^{\infty} 2^{-2x} (1 - 2^{-x-1})^{2k} dx = 4 k^{2} \int_{1}^{\infty} 2^{-2x} (1 - 2^{-x})^{k} dx$$
$$< 4 k^{2} \int_{0}^{\infty} 2^{-2x} (1 - 2^{-x})^{2k} dx$$
$$= A k^{2} / (2k + 1)(2k + 2)$$

which is obviously bounded.

Therefore we have proven the convergence of the series, which implies that $\lim_{n\to\infty} U_n(\theta) = 0$ almost everywhere in θ , which implies that

(15)
$$L(a_n) = \lim_{n \to \infty} s_{2^n}(\theta)$$

almost everywhere in θ .

This is equivalent to what we set out to prove.

REFERENCES

- 1. Hardy and Littlewood, On a Tauberian theorem for Lambert's series, Proc. Lond. Math. Soc. (2) vol. 19 (1921) pp. 21-29.
- 2. Kaczmarz and Steinhaus, Theorie der Orthogonalreihen, Warsaw, 1935, Theorem 583.
 - 3. Ibid., Theorem 585.

University of Wisconsin