LAMBERT SUMMABILITY OF ORTHOGONAL SERIES

RICHARD BELLMAN

If we define Lambert summability of a series, _%a,, in terms of
the existence of the limit

na,x"

€)) L(a,) = lim (1 — %) Z
2-1-0 1 — x

we have, by a well known theorem of Hardy-Littlewood [1],! that

C(an)—L(a.)—A4(as); C(as), A(a,) are respectively the Cesaro and

Abel means of the series Y 1@

The proof of C(a,) —L(a,) is elementary in nature, but the proof of
L(a,)—A(a,) requires the prime number theorem, and conversely the
theorem L(a,)—A (a.) implies the prime number theorem.

For that reason, it is perhaps interesting to show that for orthogo-
nal series of functions f(x), belonging to L? the inclusion of L(a,) be-
tween C(a,) and A4(a,) follows in completely elementary fashion.

That C(a,)~A(a.) for orthogonal series of L2 is a known result
of Kaczmarz [2]. Hence it is sufficient to show that L(a,)—C(a,). In
addition, it is further known that C(a,) is equivalent to the conver-
gence of the partial sums of the orthogonal series ss(6) =_anakq‘>k(0)
[3] Therefore, finally, it comes to showing that Lambert summabil-
ity implies the convergence of the partial sums s;*(6), in order to
prove the theorem.

Let f(6) CL*a, b), a,= f 1(0)$.(0)d0; where (¢.(0)) is an ortho-
normal sequence in (a, b), $.(8) =2 _1a.¢.(6).

Write, where x is 1 —1/27,

© 1 — k
OEAOEDY mm@%—_—’if— — 50(6) = Ta(6) + Va(®)

where

2 E(1 — x)x*
3) T.(0) = ; axdpi(0) (_1_-——:5’:_ - 1),
@ V) = 3 kakqsk(o)(—‘—x—)’f

onil xk

If lim, . U.(8) =0, the result is proven. To that end, consider the
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series

0

(5) 2 U0

1

To prove convergence almost everywhere in 6, it is sufficient to
show

0 b
(6) 2| [U.0)]2d8 < .

n=1

We have

b b b
n f [U.0)]2d0 = 23 f [T.0)]2d0 + 23 f [V(6) ]2d6.

Let us consider the convergence of each series separately.

=>f " [T )20 = =f : ( > a0 (k—(i—:—fﬁ— - 1)) a0
®)
R(B= )

where the x appearing in »_2 is 1—1/2" nx1.

Now
9) 1— 2= k(1 — ), 0<x=1,
k(1 — x)x*
(10) 1—2*z21 —————20,
1 — x*
so that

Zfb [T.(6)]2d0 < Z 22 Ll - =SSR —

(11) n a

=2 Z S Xl Y 1's4Ya
VAL % n>log,k &
and D ;0% < « since f(x) CL%(a, b).
Now for the second series 3,/ [ Va(6) ]%d0:

;f: [V.(6) |d0 = Zfb

a

E —_ k\ 2
(Z ano —(—1—’%”“—) &
ant1
(12)

_ Z{ik2 i 1- x)"’x“}

n 241 - k) 2
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where the x appearing in ) gy, is 1—1/27 n=1.
Since (1 —2-")* is a decreasing function of &,

Z i k2a2 (1 — x)2x2*
&

n 2tl (1 — %)

1 2. 29 2 ok
Ska(l —x) =
11— =27 3,

(13) =X

=4 X kza;(l - x)2x2k.

n 2n41

We can majorize k% _;2-2%(1—2-7)2 by the integral
% f 2-2=(1 — 271)2kdy = 442 f 2-25(1—27%) b
0 1

14 ®©
( ) < 4k2f 2—2;;(1 — 2—x)2kdx
0

= ARk + )2k + 2)
which is obviously bounded.

Therefore we have proven the convergence of the series, which im-
plies that lim,_., U,(0) =0 almost everywhere in 8, which implies that
(15) L(a,) = lim sy»(6)

n—0

almost everywhere in 6.
This is equivalent to what we set out to prove.
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