
COMPLEX METHODS IN THE THEORY OF 
FOURIER SERIES 

A. ZYGMUND 

1. General remarks. Two new ideas which greatly influenced the 
theory of Fourier series in this century are the Lebesgue integral and 
the applications of complex functions. The original impetus due to 
the discoveries of Lebesgue would have been spent long ago, but for 
the fact that its combination with complex methods opened entirely 
new prospects for trigonometric series. 

The essential tool of Lebesgue theory is the fact that the integral 
is differentiable almost everywhere and that the derivative is equal 
to the integrand almost always. Most of the fundamental results 
of the theory of trigonometric series which were based on that fact 
had been known, roughly, before 1920. Although some important re­
sults have been discovered since then, the progress of purely real 
methods in the last twenty odd years has been relatively slow and 
limited to isolated problems. I t seems quite likely that the structure 
of real functions must be investigated in more detail before purely 
real methods can resume their progress. On the other hand, it seems 
that the complex variable approach to many problems of the theory 
is the most natural one and may even be of considerable help in the 
analysis of the structure of real functions. 

Every trigonometric series 

00 

(1) l^o + X) (a* c o s v® + bv sin vd) 

is the real part of the power series 
00 

(2) Jflo + Z) 0 , - ibv)zv 

on the unit circle z = eid. The imaginary part of the series (2) for 
z = eie is the series 

00 

(3) X) (a* s m v^ "~ fo c o s vQ) 

and is called the conjugate of (1). 
Similarly, the harmonic function 
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(4) u(r> 0) = f a0 + ]C (a* c o s v$ + &* s m v^)tV 

associated with the series (1) is the real part of the analytic function 
4>{z)y z = reid, defined by the series (2). The harmonic function 

00 

(5) v(r, 0) = 2 (a* s m " 0 "" &» c o s ^ ) f * 

associated with the series (3) is conjugate to the function w(r, 0) and 
is the imaginary part of the function </>(z). 

Thus the problems of trigonometric series may be treated as prob­
lems (boundary value problems) of the theory of analytic functions. 
By complex methods in the theory of trigonometric series we however 
mean something more special, namely the application of the methods 
of analytic functions and in particular of the fact that the latter form 
a field. Elementary operations performed on analytic functions lead 
to analytic functions, as does also the operation of taking a function of 
a function. Nothing like that holds for harmonic functions, since even 
the square of a harmonic function need not be harmonic. Thus dealing 
directly with analytic functions instead of with their real parts gives 
obvious advantage. 

The complex methods in trigonometric series have been systemati­
cally developed in the last quarter century, although some isolated 
applications can be traced back to an earlier period. Roughly speak­
ing, in the development of complex methods we may discern three 
major trends: 

(a) The method of the classes Hp, 
(b) The method of conformai representation, 
(c) The Little wood-Paley method, 

and it is the purpose of this talk to say a few words about each of 
these methods. I t goes without saying that in a talk like this the pres­
entation may be only very sketchy and must be limited to a discus­
sion of a few particular results. 

2. Classes Hp of analytic functions. One of the important prob­
lems of the theory of trigonometric series is to establish conditions 
under which a given trigonometric series (1) is a Fourier series. In 
other words: when is there an integrable function ƒ(pc) such that the 
coefficients ant bn are given by the familiar formulas 

1 r2v 1 r2* 
(6) an = — I f(x) cos nxdx, bn = — I f(x) sin nxdx? 
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In the theory of Fourier series we often consider besides the most 
general integrable functions (by "integrable" we always mean L-in-
tegrable) classes of more special functions, for example, continuous, 
bounded, of the Lebesgue class Lp, £ à 1, and so on, and we may ask, 
in addition, under what condition does ƒ belong to one of those classes. 
The Fourier character of the series (1) may be easily detected by 
means of the harmonic function (4) associated with the series. For 
functions of the class Lp , p>l, we have a very simple test: a neces­
sary and sufficient condition that (1) is the Fourier series of a function 
ƒ of the class Lp is that the integral 

(7) f *\u(r9e)\*d0 

be bounded for 0 g r < l . For p = l this result is no longer true: a 
necessary and sufficient condition for the boundedness of the integral 

(8) f *\ u(r, 0) | dO 

is that there exist a function F(x), 0^#^27r , of bounded variation 
and such that 

(9) an = — I cos nxdF(x), bn = — I sin nxdF(x). 
7T t/ o 7T •/ o 

Of course, if F(x) is absolutely continuous and F'(x) =ƒ(#), these for­
mulas reduce to (6), but in general it is not true. The series (1) with 
coefficients (9) is called a Fourier-Stieltjes series. The series (1) is a 
Fourier-Stieltjes series if and only if the integral (8) is bounded for 
0 ^ r < l . A necessary and sufficient condition that (1) should be an 
ordinary Fourier series is slightly more complicated : it is 

I u(r, e) - u{r\ e) I de = o. 
o 

(For the proofs of all these results see, for example, Evans [2]1 or 
Zygmund [33]; in the sequel, the latter book will be quoted TS.) 

Let us now consider any function 

00 

(11) *(*) = 2 W 

Numbers in brackets refer to the references listed at the end of the paper. 



808 A. ZYGMUND [November 

regular for |£ | < 1 . If the integral 

\4>(re«)\*d0 
o 

(analogous to (7)) is bounded for O^r < 1 , the function <f>(z) is said 
to belong to the class Hp (H stands for Hardy) ; p is here any positive 
number. The case p = 2 is of special interest since in this case the in­
tegral (12) is easily expressible in terms of the coefficients cv by means 
of the Parseval formula 

1 /• 2 T oo 

— I \ <t>(reie) \2d$ = X ) | G | V 2 " . 
2TT J o v=o 

Hence the function <j>{z) belongs to the class H2 if and only if the 
series 2D 1^12 converges. No result of this kind holds for pT^l, and 
this makes H2 a central class ("central" in more than one sense), 
whose properties are the easiest to study. The fact that if X)| c*\2 *s 

finite then the series 

E cve ivB 

is the Fourier series (with respect to the system {e*"0}) of a function 
of the class L2 is the classical Riesz-Fischer theorem. 

Of course, given any function <j>(z) regular in \z\ < 1 and of the 
class Hp we might set 

(13) **(*) = e(z) 

so that the boundedness of the integral (13) is equivalent to that of 

• 2? r 

/

» 27T 

\f(reie)\2d0, 
o 

that is to say to the fact that yp is of the class H2, but the formula (13) 
defines a function \f/ regular in \z\ < 1 only if <j> has no zeros there. 
If <t>{z) does have zeros, the argument has to be modified slightly, and 
following F. Riesz [26] (TS, [6]) we may proceed as follows. Let 
Si, 22» • • • (|s„| <1) be the zeros (counted according to their multi­
plicity) of the function <j>(z) f^O, of the class Hp. I t may be shown that 
the product 

(i4) nui 
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converges. In other words, the sum ^) (1 — | zv\ ) is finite. Conversely, 
given any sequence, finite or infinite, of numbers zvi \zv\ < 1 , such that 
the product (14) converges, there is a function B(z), regular and 
bounded in \z\ < 1 (and so, in particular belonging to every class Hp), 
having zeros a t the points zv and only there. If, for example, the points 
zv are all different from the origin, the function B(z) may be defined 
as the product ("Blaschke product") 

„ % — Zv 1 
(15) B{z) = I I ;-, 

v Z Zv J Zv I 

where zv* = l/zv is the point conjugate to zv with respect to the circum­
ference \z\ = 1 . (If <f> has a zero of order k a t the origin, we have to 
insert the factor zh on the right of (IS).) I t may be easily shown that 
|i?(2)| < 1 for |JS| < 1 . Thus the function <t>(z)/B(z)—\p(z) is regular 
for \z\ < 1 , does not vanish there, and we have the decomposition 

<Kz) = B(z)*(z). 

If </>(z) has no zeros we set B(z) s i . I t is an important fact that the 
function \f/ also belongs to Hp (more precisely, if for the function $ 
the integral (12) does not exceed a constant M for all r < 1 , the func­
tion y}/ has the same property). Since we may write 

*(*) = *(*) + (B(z) - l)iK») = *(s) + Uz) 

say, and since B(z)~-1 does not vanish in \z\ < 1 and is absolutely 
less than 2 there, we get the following decomposition theorem: every 
function of the class Hp may be represented as a sum of two functions 
of the class Hp which have no zeros in \z\ < 1 . Since the functions of 
the class Hp and without zeros are reducible to functions of the class 
H2y whose properties are particularly simple, those properties may be 
extended to classes Hp. In particular, we get the following fundamen­
tal theorem (in which by a non-tangential path we mean any con­
tinuous curve approaching a point Zo, \zo\ = 1 , from inside the unit 
circle and contained between two chords through Zo of that circle). 

Suppose that </>(z) is of the class Hp. Then for almost every point ei9 

on \z\ = 1 , 

(16) lim <t>(z) 

exists and is finite provided that z approaches eid along any non-tan­
gential curve. Moreover, if<t>{eie) denotes the limit (16), 
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\<t>(reie) -<t>(eid)\pdd-*Q, 
o 

| 4>(re«) - * ( r V 1 ) | *d0 -> 0, 
o 

as r and r' tend to 1. 

I t must be added that for p>l this result had been known before 
the decomposition theorem was proved (for then, by what was said 
before, the series ^cve

ipe is a Fourier series, and so may be studied 
directly by familiar methods), but in the case 0 < £ ^ 1 it brings to 
light some new facts. 

The most important case here is that of p = l. Suppose that 4>(z) 
belongs to H (that is Hl), say 

(19) f | <t>(reid) \i0 <M 
J Q 

for 0^r<l. The function $(JS) is a (complex-valued) harmonic func­
tion. Thus (by what was said before) the series 

00 00 

(20) £ cve
iv9 = ] £ £"(c°s vB + i sin vff) 

is a Fourier-Stieltjes series. On the other hand, since (19) implies 
(18) with £ = 1, we see that the series (20) is an ordinary Fourier 
series. Thus it turns out that for the trigonometric series (20) which 
are generated by power series on the circle of convergence, the dis­
tinction between ordinary Fourier series and Fourier-Stieltjes series 
disappears. If we take into account the familiar fact [TS, 16] that 
Fourier-Stieltjes series are obtained by differentiating formally Fourier 
series of functions of bounded variation we obtain the following result. 

If the series 

(21) £ C*M 

is the Fourier series of a function of bounded variation, this function 
must be absolutely continuous. In particular, if $(z) is regular in 
\z\ < 1 , continuous in |*| =al, and if $(eie) is of bounded variation, 
then $(eie) is absolutely continuous (F. and M. Riesz [27]). 

This fact is of great importance for the theory of conformai mapping. 
Another result which may be obtained by means of the decomposi-
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tion theorem, and which shows the difference that exists between 
ordinary trigonometric series and the series (20), is the following 
theorem. 

If (21) is the Fourier series of a function of bounded variation the 
series ]T)| Cv\ converges (Hardy and Littlewood [5]). 

There exist such simple proofs of this result that one of them may 
be reproduced here (See Hardy, Littlewood and Pólya [7]). The prob­
lem reduces to showing that if the function <j>(z) =^2cvz

p is of the class 
H, the series £ } | cv\ /(v+1) converges. We may assume that <f>(z) has 
no zeros in \z\ < 1, so that <f> =\f/2 where \l/(z) =^dvz

p is of the class H\ 
If we use the fact t h a t ^ | dv\

2 < + <*>, the convergence of]T) | cv\ (v+1)""1 

follows from the fact that 

y»0 y=0 
^ J dkdi 

00 

è Z ( " + l)_1 Z \dkdi\ 
v~0 k+ l=*v 

and from the familiar theorem of Hubert asserting the convergence 
of the series T^aw i/(*+/+l) if 2>J is finite. 

The following theorem due to Hardy and Littlewood [6; TS, p. 249] 
throws additional light on the behavior of the functions of the class Hp. 

Suppose that <j>{z) is of the class Hp, and let 

<t>*(6) = sup | 4>{reiQ) \. 
0£r<l 

Then </>*(0) is of the class Lp, and 

fT {<t>m}pdd^Cp f%r\4>{e«)\*ie9 
J o ^ o 

where CP depends on p only. 

Hence every function of the class Hp has a majorant which depends 
on the argument 6 only and which is of the class Lp. An analogous 
result holds for harmonic functions, and is an important tool in many 
problems of the theory of Fourier series. A result similar to the theo­
rem just stated holds if instead of <l>*(0) we consider the upper bound 
of <t>{z) in a sector with vertex at the point eid and directed to the in­
terior of the unit circle* 
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Let <j>(z)=u-j-iv be a function regular for |g| < 1 . I t is natural to 
ask for the relation between the behavior of the two integrals 

/

» 2v /» 2 T 

\u(reiQ)\Hdy I \v(rei9)\*dB. 
o Jo 

The fundamental theorem of M. Riesz [28; TS, p. 147] asserts that, 
if p > 1, these two integrals are simultaneously bounded or simultane­
ously unbounded. Thus, the series conjugate to the Fourier series of a 
function of the class Lp is also the Fourier series of a function of the 
class Lp. The result is not true if £ = 1, that is to say for functions 
merely integrable. 

How the method of the complex variable may be applied to prob­
lems of real functions is illustrated by the following example which is 
by now quite familiar, but deserves mention here. Let f(d) be a func­
tion of period 27T, and let (3) be the series conjugate to the Fourier 
series of jf(0). lif(6) is sufficiently regular, for example if it has a 
continuous derivative, or even if ƒ(0) only satisfies a Lipschitz con­
dition of positive order, the series (3) converges to the sum 

M I ƒ(* + Oi cot \tdt = lim ( + I ), 

which is called the function conjugate to f (6). Under the conditions 
imposed on ƒ, the integral converges, even absolutely. The problem is 
whether this integral converges, at least almost everywhere, for the 
most general function ƒ integrable Z? That this is so for ƒ continuous 
was shown already by Fatou [3 ] and even that rather special result 
is far from obvious. For the most general integrable ƒ it is easy to show 
that almost everywhere the existence of ƒ (0) is equivalent to the 
existence of the radial limit of the function ƒ (r, 0) conjugate to the 
Poisson integral of ƒ. If we use rather elementary facts from the 
theory of the complex variable, we may easily show that the radial 
limit of f(r, 6) exists almost everywhere, and this proves that the in­
tegral ƒ (0) exists almost everywhere (Privaloff [24], Plessner [ l9];TS, 
p. 145). 

Although there exist purely real proofs of the existence of ƒ (0) 
(Besicovitch [ l ] , Titchmarsh [30], Marcinkiewicz [14]), the one 
sketched above is the simplest, and seems to lead to the roots of the 
matter . 

In the case that ƒ(0) is the characteristic function of a measurable 
set E, the existence of the function ƒ (0) has a certain geometric sig­
nificance. I t shows that in the neighborhood of almost every point of 
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E that set has a certain symmetry of structure (for otherwise the 
integral defining ƒ (0) would be divergent). This property is not easily 
deducible from the familiar properties of measurable sets (for ex­
ample, from the theorem on the points of density), for otherwise we 
should have a simple real function proof of the existence of f (6). 

One might argue that the study of the conjugate functions is 
strictly speaking outside the scope of the theory of Fourier series. 
But this is not so, and there seems to be a close relation between the 
behavior of the partial sums Sn(0) of a Fourier series and certain 
conjugate functions. Let us consider instead of 5»(0) the modified 
partial sums S*(d) differing from Sn(6) in that only half of the last 
term is taken. Hence 

n - 1 

S*(d) = %a0 + ]T) (a" c o s y0 + bv sin v6) + %(an cos nd + bn sin nd). 

For S«*(0) we have a formula similar to the classical Dirichlet formula, 

1 C r sin nt 
Sn*(0) = - fVf(0 + t). -dt 

2 tan (//2) 

(TS, p. 21) and it may be written formally 

cos nd C* 
S*(d) = I f(0 + t) sin n(0 + 0 J cot (*/2) 

sin n$ Cr 

I jf(0 + /) cos n(0 + t)i cot (t/2)dt 

= — gn(0) cos n$ + hn{6) sin nd, 

say, where gw(0) and hn(d) denote functions conjugate to /(0) sin nd 
and/(0) cos nd. From this formula and from the slightly strengthened 
form of the theorem of M. Riesz just stated, the following fact (also 
due to M. Riesz) follows easily: For every function ƒ (0) of the class Lp, 

f ' l / W - 5W(0)|^0^O as n —* + oo. 

I t is a curious fact that in order to prove this result from the the­
ory of Fourier series (in the narrow sense of the word) we have to 
use properties of conjugate functions. No other proof seems to have 
been discovered so far. 

The theory of the functions Hp has an analogue for functions regu-
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lar in a half-plane. The latter theory (developed mainly by Hille and 
Tamarkin [8]) has its applications mostly in the domain of Fourier 
integrals, and for this reason we omit its discussion here. Also to the 
domain of Fourier integrals belong the complex methods developed 
by Paley and Wiener [18]. 

3. The method of conformai representation. We first recall familiar 
facts. Let A be any domain in the f-plane limited, say, by a simple 
Jordan curve T. There is a function Ç = h(z) defined and regular in 
the unit circle 

(D) | * | < 1 

and mapping D conformally onto A. The function h(z) may be ex­
tended continuously to the closed domain D + C, where C is the cir­
cumference \z\ = 1 , and gives a one-one correspondence between 
D + C and A + T. If we add some normalizing conditions, the func­
tion h(z) is unique. 

Let us assume from now on that the curve T is rectifiable. For point 
sets situated on a rectifiable curve we have, of course, a theory of 
measure analogous to that of Lebesgue. In particular, we may speak 
of sets of measure 0, of "almost everywhere," and so on. 

In our case, since T is of finite length, the function <j>{z) must be of 
bounded variation on the circumference C. This means, as we know, 
that <f>(z) must be absolutely continuous on C. In particular, it trans­
forms every set of measure 0 on C into a set of measure 0 on T. The 
converse is also true, the sets of measure 0 on T correspond to sets 
of measure 0 on C. In other words, in our case, the sets of measure 0 
on the boundaries are invariants of conformai mapping. This result 
was first proved by F. and M. Riesz [27]. 

There is another property, obtained by Privaloff [24], of the 
mapping function h(z) : the mapping is conformai at almost every 
point of the boundary. This is to be understood as follows. If we 
exclude a certain point set of measure 0 on C, each of the remaining 
points Zo has the property that if C' and C" are any two paths leading 
from the interior of D to the point z0 and making angle a, the images 
T', T " of C', C" make angle a at the point fo=#(*o). 

In order to see how the above results can be applied, let us sketch 
the proof of a theorem of Privaloff [23]. Suppose that a function <j>(z) 
= u+iv is regular in |g| < 1 , and that there is a point set E on the 
circumference \z\ = 1 with the following property: for every Zo = eidQ 

belonging to E there is a circular sector O(s0) with vertex at z0, lying 
except for zQ entirely inside C, and such that the real part u(z) of 
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<j>(z) is bounded in Q(z0). Then, the function </>(z) has a nontangential 
limit at almost every point z0 of E. 

A special case of this result worth a separate statement is : if the 
real part u(z) of a regular function <t>(z), \z\ < 1 , has a nontangential 
limit at every point z0 of a set E of the circumference \z\ = 1, the imagi­
nary part v(z) has the same property at almost every point of E. 

Let us assume, to fix the ideas, that 12(so) is symmetrical with re­
spect to the radius (0, z0). Without loss of generality we may also as­
sume that the function u(z) is bounded uniformly in all the ö(so), 
2o£E. For the upper bound M(z0) of u in Ü(ZQ) is a function of z0 and 
is finite on £ , so it follows that if we reject from E a subset of 
arbitrarily small measure, M(zo) will be bounded on the rest of E. 
By a similar argument we may assume that the angles of the sectors 
ti{z0) are the same, or even that all these sectors are congruent. Let 
\z\ = § be the circle tangent to the rectilinear sides (or their continua­
tions) of the sectors fl(js0). Without loss of generality, we may replace 
each fi(so) by the domain £2'(20) limited by the two tangents from z0 

to \z\ = S, and by the more distant arc of the circle. One more remark: 
we may assume that £ is a perfect set. 

Let now A denote the sum of all the domains Q,'(z0) for z0Ç£E; 
A has a starlike shape (see the figure). I t is connected. The points 
of its frontier T, which is a simple Jordan curve, may belong either 
(a) to the set Et (b) to a number of arcs (nonexistent on the figure) 
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of the circle \z\ = 5, (c) to the denumerable set of segments 5 belong­
ing to the boundaries of some Q,'(z0). Since the regions Q'(so) are all 
congruent, it is clear that the total length of the segments 5 does not 
exceed a fixed multiple (depending only on the shape of the Î2's) 
of the total length of the intervals contiguous to E. Thus the curve T 
is rectifiable. 

The function u(z) is bounded in A. Hence, if z = h(w) maps A con-
formally onto the unit circle \w\ < 1 , the function 

u(z) = u(h(w)) = ui(w) 

is harmonic in the circle \w\ < 1 . I t is the real part of the function 

<j>(h(w)) = #i(w) 

regular in \w\ < 1 . The real part of <j>i(w) being bounded, the latter 
function is of the class H2, and so has a nontangential limit at almost 
every point of the circumference \w\ = 1 . If we go back from 4>i(w) 
to the function <j>(z)y and take into account the results of F. and 
M. Riesz and of Privaloff mentioned above, we see that <f>(z) has a 
nontangential limit at almost every point of T, in particular almost 
everywhere in E. This completes the proof. 

Without changing the idea of the proof we may generalize this re­
sult considerably (see Plessner [2l]). We prefer, however, to give a 
different application. 

Let <t>(z) be a function regular in |z | < 1 and of the class H2, and 
let &'(z) = Û'(0) have the same meaning as before. Lusin proved that 
then the integral 

(22) 7(0) = f f | <*>'(*) |2rfco 

(dco an element of area) is finite for almost every 0. This integral 
represents the area of the domain (generally non-schlicht) obtained 
from Î2'(0) by the mapping w=</>(z). By an argument similar to the 
above we may show (see Marcinkiewicz and Zygmund [15]) that, if 
<t>{z) is any function regular in \z\ < 1 , and if it has a nontangential 
limit at every point eid o f a set E of positive measure, then the integral 
(22) is finite almost everywhere in E. Recently, Spencer [29] proved a 
converse of the above result, namely that the finiteness of the integral 
1(6) in a set of 0 of positive measure implies the existence of the non­
tangential limit at almost every point of that set. Thus we see that al­
most everywhere the existence of the nontangential limit is equivalent 
to the finiteness of a certain area. 
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The method of conformai representation, as presented above, seems 
to have originated with Golubeff [4]. If we are to use it, we must 
know the behavior of the function in certain sectorial domains from 
which we build up a new domain whose boundary has "many" points 
in common with the boundary of the domain in which the function is 
defined. I t would not work if we wanted, for example, to prove that 
the existence of the radial limit of u{z) along a set of positive measure 
of radii implies the existence of the radial limit of v{z) along almost 
every radius of the set, and the problem itself is open (u and v here 
are the real and the imaginary part of a function regular in \z\ <1 ) . 
In other words, we do not know whether the Abel summability of a 
trigonometric series does or does not imply (almost everywhere) the 
Abel summability of the conjugate series. 

For some other methods of summability, in particular for ordinary 
convergence, the problem is solved. A very important step in this di­
rection was first made by Kuttner [12], who showed that if a Fourier 
series converges in a set of positive measure, the conjugate series converges 
almost everywhere in that set. This result was later on extended to the 
most general trigonometric series, and to the Cesàro summability. 
The existing proofs (see Plessner [22], Marcinkiewicz and Zygmund 
[16, 17]) are quite difficult and are essentially based on complex 
methods. 

The problem of the convergence of power series (or trigonometric 
series) leads naturally to the problem of the distribution of the partial 
sums of divergent series. I t turns out that under certain conditions 
the distribution of those partial sums displays a very simple geometric 
character. 

We shall say that a sequence of points {sn} is of circular structure 
with respect to the point s, if the derived set of the sequence {sn} 
consists of a certain number (finite, denumerable, or nondenumerable, 
but in any event a closed set) of circles with center at the point s. If 
for the sake of simplicity we confine our attention to power series 

00 

(23) X) W = tf (*) 

with bounded coefficients, we have the following result (Marcin­
kiewicz and Zygmund [17]). 

Suppose that 

lim <t>(reie) = s(6) 
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exists for every 0 of a set E of positive measure. Then, for almost every 6 
of £ , the sequence {sv(e

i6)\ of the partial sums of the series (23) is of 
circular structure with respect to the point s(0). In particulart if the co­
efficients cv tend to 0, then for almost every 0 £ £ the derived set of the 
sequence {s v (e

ie)} is a circle {finite or infinite) with center at the point s (0). 

Quite recently new applications of conformai mapping to the the­
ory of trigonometric series were obtained by F. Wolf. He combined 
conformai mapping with certain extensions of the Phragmèn-Lindelöf 
principle. I would like to mention here one of the important results 
he obtained. 

The problem whether a given function can be represented by more 
than one trigonometric series (not necessarily a Fourier series) may be 
reduced, by subtracting these series, to the following problem: can 
a trigonometric series 

00 

(24) | a 0 + 23 (a* c o s ^ + *» s*n ^ ) 
* - i 

which does not vanish identically represent zero? This "problem of 
uniqueness" of trigonometric series has various aspects. I t is a classi­
cal fact that in the case of convergent series it admits of a positive 
solution: if the series (24) converges to 0 at every point, the coeffi­
cients av and bv all vanish. The next step is to consider summable se­
ries. The case of Abel summability is of particular importance since it 
means studying the radial behavior of the harmonic function 

00 

(25) u(r, 0) = è^o + 23 (a» c o s ve + b» s i n ve)r" 

associated with the series (24). Rajchman [25] proved that if the 
function (25) tends to 0 along every radius and if in addition 
\av\ + |i„|—»0, the series (24) vanishes identically. Verblunsky [3l] 
replaced the last condition by \av\ +\bw\ =0(v). If we consider only 
radial limits, we cannot go much further since there are trigonometric 
series with coefficients 0(v), summable A everywhere, and yet not 
vanishing identically: the series 

00 

2 v sin vB 
* - i 

is an instance in point. Thus we must impose new restrictions if we 
wish to obtain positive results. Wolf [32] proved that : 
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If (i) u{r> 0) is harmonic for r < l , (ii) for every 0O, u(r, 0)—>O 
as (r, 0)—>(1, do) along any nontangential path, (iii) \u(r, 0)| 
gexp .4/(1 — r)m

y where A and m are independent of r and 0, then 
the series (24) vanishes identically. 

4. The Littlewood-Paley method. This method (see Littlewood and 
Paley [13]) cannot be easily described without going into technical 
details, and by necessity I shall have to be rather brief here. Let me 
start with some of the results they achieved. Suppose tha t / (0) is an 
integrable function of period 27r, and let Sn(6) denote the nth partial 
sum of the Fourier series of/(0). I t is a familiar fact that Sn(0) may 
diverge at some points even if/(0) is a continuous function. Whether 
there exists a continuous function ƒ such that Sn(6) diverges every­
where, or at least almost everywhere, is still an open problem. For ƒ 
merely integrable, the divergence of Sn(6) may actually occur every­
where, as shown by Kolmogoroff [9; TS, p. 175]. I t is a curious fact 
that so far it has not been possible to construct a similar example for 
functions of any class Z>, p>l, and the problem seems to be much 
more difficult there. 

Of course, from a certain point of view the function /(0) is ade­
quately represented by the Fejér means of its Fourier series, but the 
behavior of the partial sums Sn is of considerable intrinsic interest. 
For functions of the class Z>, p> 1, Paley and Littlewood proved the 
following result (the special case £ = 2 was solved earlier by Kol­
mogoroff [10; TS, p. 257]). 

Whatever the sequence of positive integers n\, n2, • • • satisfying an 
inequality 

nk+i/nk > q > 1, 

the partial sums Snk(0) converge to f'(0) at almost every point. 

The result is false for p = 1 (although it holds for power series of 
the class H\ see Zygmund [34]). Its significance consists in the fact 
that the sequence nk is independent of the function/. 

Another result which Littlewood and Paley proved concerns the 
convergence factors of Fourier series. I t is a familiar fact due to Hardy 
that if (24) is the Fourier series of an integrable function, the series 

00 

] £ (av cos vB + bv sin vff)/\og v 

converges for almost every 0. If ƒ is of integrable square, even the 
series 
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00 

(26) V (a, cos vd + bv sin vd)/(\og v)l*% 

converges almost everywhere (Kolmogoroff and Seliverstoff [ l l ] , 
Plessner [20]; TS, p. 252). Littlewood and Paley proved the inter­
mediate result: i f / £ Z > , l<p<2, the series 

00 

V (av cos v6 + h sin *>0)/(log v)1/p 

v=2 

converges almost everywhere. Nothing is known about the case p>2. 
In particular, about convergence factors for continuous functions we 
know no more than for functions of the class L2, that is to say that 
the series (26) is convergent almost everywhere. The latter fact is 
equivalent to saying that the partial sums S»(0) of the Fourier series 
satisfy the relation 

(27) Sn(6) = o(lognyt* 

at almost every point. I t may be that the estimate (27) is the best 
result for the Fourier series of continuous functions. 

The Littlewood-Paley theory is based on the use of the function 
g(0) defined by the formula 

*(*) = ( ƒ (i-0|*'("")|8<fr) 

where <t>(z) is any function regular in \z\ < 1 . The function g{6) has 
no simple geometric interpretation, but has some connection with the 
integral 1(0) (see (22)) whose geometric significance and relation to 
the existence of the non tangential limit was already mentioned. Let 

so that s(6) is of dimension 1. I t may be shown that s(0) is, effectively, 
a majorant of g(6); more precisely, g(6)^Cas(S) where Ca depends 
only on the angle a. The results obtained by Littlewood and Paley for 
the function g(0) when interpreted in terms of the function s(6) may 
be stated as follows: If <t>(z)^Hp

t p>l, then 

f s*(0)dO ^ A p , a f |*(e") | p<». 
«^ o J o 

/

* 2r f%2r 

| *(««*) I'd» £ B,,a I sp(0)d8. 
Û J Û 
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Here Ap,a and Bp,a depend on p and a only; in addition, for the valid­
ity of the second inequality we have to assume that 0(0) = 0. Thus the 
integrability of s(d) imitates that of |0(e**)| • 
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