
ANALYSIS IN COMPLEX BANACH SPACES 

ANGUS E. TAYLOR 

1. Introduction. Abstract spaces, and Banach spaces in particular, 
have played a prominent rôle in recent years in connection with many 
problems of analysis. There has also been a notable tendency for the 
concepts and tools of analysis to take a place alongside the algebraic 
and topological notions which are characteristic of the whole subject 
of abstract spaces. Thus analysis becomes more algebraic, and at the 
same time its range is broadened. 

For a great many purposes it is immaterial whether a Banach space 
be real or complex. I t is well known that a large portion of the theory 
of linear operations, as developed in Banach's book (Banach [l]1), 
is equally valid for complex or real spaces. There are, however, situa­
tions in which the complex number system plays a crucial rôle. The 
theory of analytic functions in Banach spaces is a case in point. There 
are two large divisions of this subject: the theory of functions of a 
complex variable, the values of the functions lying in a Banach space, 
and the theory of analytic functions of an abstract variable. Our 
principal concern in this paper will be the first of these two theories. 
A brief survey of the second theory, and references to the literature, 
are given in §8. 

Henceforth, except as otherwise stated, we shall use the term 
Banach space to mean a complex Banach space. The algebraic struc­
ture of such a space is that of an additive Abelian group with the 
complex numbers as operators. The topology of the space is defined 
by a norm; the norm of an element x is written ||#||. I t has the proper­
ties of an absolute value. Then \\x — y\\ is the distance between x and y, 
and the space is assumed to be a complete metric space. 

2. Analytic functions. The basic development of the theory of ana­
lytic functions with values in a complex Banach space £ , the inde­
pendent variable being a complex number, follows the pattern of 
classical analysis. I t seems to have been pointed out first by Wiener 
[ l ] that Cauchy's integral theorem is valid in this general setting. 
The usual consequences, such as the Cauchy integral formula, Liou-
ville's theorem, and the Taylor and Laurent expansions, then follow. 
I t is only when we come to theorems that deal in some way with di-

An address delivered before the Stanford meeting of the Society on April 24, 1943, 
by invitation of the Program Committee; received by the editors May 18, 1943. 

1 Numbers in brackets refer to the bibliography at the end of this paper. 
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vision of function values that significant differences appear. 

3. Weak, uniform, and strong analyticity. If £ is an abstract 
Banach space, the space of all complex linear functionals defined on E 
is also a Banach space, denoted by £*. Let us consider a single-valued 
function x(z) with values in E, where z ranges over a region D of the 
complex plane. If ƒ is an element of £*, fx{z) is a numerical function 
of z. If fx(z) is regular in D for each ƒ in £* we shall say that x(z) is 
weakly regular in D. 

THEOREM 1. The function x(z) is regular in D if and only if it is 
weakly regular there. 

This theorem, in a slightly more general form, is due to Nelson 
Dunford (Dunford [l, Theorem 76]). Instead of requiring fx(z) to be 
regular for each ƒ in £*, it is sufficient to impose the requirement for 
each ƒ in a determining manifold in £*. A subset S of £* is called a 
determining manifold if it is a closed linear subspace of £*, and if 
there is a constant M such that for each x in E the least upper bound 
of | f(x) | /\\f\\, as ƒ ranges over S, is not less than M\\x\\. 

The theorem depends upon the following lemma. 

LEMMA 1. If T is an arbitrary range, and x(t) is a function on T into 
E such thatfx(t) is bounded on T for each f in E* (or, more generally, 
for each f in a determining manifold), then \\x(t)\\ is bounded on T. 

The proof of the lemma (Dunford [l, p. 354]) is of the category 
type. We shall give a new, brief proof of Theorem 1. Let us write 

Q(z, h) = 0 0 + h) - x(z))/h. 

Suppose that x(z) is weakly regular in D. Let C be a circle of radius r, 
with center at z, which, together with its interior, lies in D. By 
Cauchy's integral formula 

I f (h - k)dt 

M*> *) ~ /<?(*> *) = — Mi) T — — — v 
2TTI J c (t — z — h)(t — z — k)(t — z) 

provided that \h\ and \k\ are less than r. Now, for each ƒ, fx(t) is 
bounded on C; hence, by the lemma, there is a constant M such that 
\\x(t)\\^Mon C. Thus |jf*(/)| ^Afj | / | | , and 

M I h — k\ 

\f[Q(z, h)~Q(z, k)]\ s 7—r^T—rrrM' 
(r — I A )(r — | * ) 

But then 
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ii H M\ h — k\ 

G(* *) - G(*. *) ^ 7 T71T7 TTÜ • 
(r - I A| ) ( r - I *| ) 

It follows, since £ is complete, that Q(z, h) approaches a limit as 
h—>0. This proves that #(2) is regular in D. That weak regularity is 
a consequence of ordinary (strong) regularity is, of course, trivial. 

The next theorem, discovered by the writer (Taylor [6, Theorem 
2.1]), is closely related to Theorem 1. Let E\ and £2 be Banach spaces, 
and let [Eu £2] denote the Banach space of all linear transformations 
of Ei into £2 . The norm | | r | | of a transformation T is defined as the 
least upper bound of || Tx\\ for all elements x of £1 such that \\x\\ = 1. 
Let A x be a family of linear transformations of £1 into £2 , the parame­
ter X ranging over an open set D of the complex plane. We say that 
A x is strongly analytic and regular in D if for each x in £1 the function 
A\x is regular as a function with values in £2 . We say that A\ is 
uniformly analytic and regular in D if it is regular as a function with 
values in [Eu £2]. 

THEOREM 2. The family A\ is uniformly regular in D if and only if 
it is strongly regular there. 

The proof of this theorem may be modeled very closely after the 
above proof of Theorem 1. Instead of Lemma 1 we use an analogous 
lemma about linear transformations (cf. Banach [l, p. 80, Theorem 
5]). I t is a corollary of Theorems 1 and 2 that the regularity of <f>A \x 
for each x in £1 and each 0 in £2* implies the strong, and hence the 
uniform, regularity of A\. I t is to be emphasized that Theorems 1 
and 2 are not true if we substitute continuity for analyticity. 

4. Concrete Banach spaces. A space £ is said to possess a de-
numerable basis {xn} if to each x in £ there corresponds a unique 
sequence of numbers {un} such that 

00 

X ==z f j UjcXjc» 

If we define fn(x) —un, fn is an element of £* (Banach [l, p. 111]). 
A number of familiar spaces have bases- with the property that a se­
ries ^ ^ a * ^ converges if the norms of the partial sums^Li^^A; are 
bounded (Dunford and Morse [l, p. 415]). A space with a basis of 
this sort will be said to have property (A). The function spaces 
Lp (p > 1), and the sequence spaces lv (p ^ 1) are examples. The space 
(c) of convergent sequences has a basis, but it does not have property 
04). 
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THEOREM 3. Let E be a space with a denumerable basis. Let {un(z)} 
be a sequence of numerical functions of the complex variable z, each 
analytic and regular in a region D, and such that 

(a) to each compact2 subset S of D and each f in £* there corresponds 
a constant M such that \f(jT]l~iUk(z)xk) \ S M if z is in S and n=l, 2, 
3, • • • ; 

(b) the series ^^i^k(z)xk converges if z is in D. 
Then the f unction x(z) =^2^1Uk(z)xk is analytic and regular in D. 

Its derivative is x'{z) =XXi^& {%)Xk-

We first observe that if the space has property {A), condition (b) 
is automatically satisfied when (a) is, by virtue of Lemma 1. Because 
of Theorem 1, it is enough to prove that x(z) is weakly regular. This, 
however, follows directly from (a) and (b), by Montel's theorem. We 
leave it for the reader to show that x'{z) is given by the series indi­
cated. 

Theorem 3 furnishes a practical method for testing analyticity. For 
example, it shows at once that a sequence {un(z)} of functions with a 
common region of regularity D may be regarded as an analytic func­
tion on D into lv if the partial sums ]CLi|^&(s)|p a r e uniformly 
bounded in each compact subset of D. For other results of the same 
type, see Taylor [6, Theorem 3.1]. 

Consider next the space C whose elements are complex functions 
x(t) continuous on the closed interval [a, b], with the norm 

\\x\\ = max | x(t) |. 

If x(t, z) is a function of t and z which belongs to C for each value 
of z, we shall use the notation x{ •, z) when we wish to regard x(t, z) 
as a function of z with values in C. Bôcher [l] used the term semi-
analytic to describe functions x(t, z) which are continuous in the pair 
/, z and analytic as functions of z. Bocher's results concerning such 
functions, insofar as the dependence upon z is concerned, may be re­
garded as corollaries of the abstract theory with which we are con­
cerned, as soon as it is shown that the hypothesis of semi-analyticity 
is sufficient to make x( •, z) an analytic function of z. The following 
theorem proves this and slightly more: instead of continuity jointly 
in / and z it is enough to require boundedness. 

THEOREM 4. A function x(t, z) defines a function x( •, z) regular in 
a region D if and only if 

(a) x(tt z) is continuous on [a, b]for each zin D; 
2 Compact sets, as we use the term, are closed. 



656 A. E. TAYLOR [September 

(b) x(t, z) is regular in Dfor each ton [a, b] ; 
(c) to each compact set S in D there corresponds a constant M such 

that |x(t, z)\ SMift is on [a, b] and z is in S. 

By employing Cauchy's integral formula much as in the proof of 
Theorem 1 we can show directly that the difference quotient 

(x(t, z + h) — x(t, z))/h 

converges to its limit as h—»0, uniformly with respect to t. But this 
means that 

0(-, z + h) - #(•, z))/h 

converges to a limit in the topology of C. The conditions (a)-(c) are 
thus seen to be sufficient. Their necessity is trivial. 

The continuity of x(t, z) and dx/dz jointly in t and z is a conse­
quence of the regularity of x( •, z). 

The situation in the space Lp is much more complicated. Wiener 
[ l ] studied power series in z whose coefficients are functions in L2. 
Taylor [6, Theorem 3.2] showed that a function F(z) which is 
analytic in D, with values in Z>, can be represented by a function 
x(t, z) which is defined when z is in D and / is on the interval [a, b], 
but not in a certain fixed set N of measure zero. The significant thing 
is that this exceptional set is independent of z. The function x(t, z) 
is regular as a function of s, and the integral Jh

a \ x(t> z) \ pdt is bounded 
in each compact subset of D. The latter conditions are, conversely, 
sufficient to determine x( •, z) as an analytic function on D into Lv. 

In the paper referred to above, Taylor studied abstract linear dif­
ferential systems of the forms 

dx/d\ = A\x and dx/d\ = A\x + s(X), 

where A\ is a linear transformation depending analytically on X, and 
zÇk) is a given abstract function of X. In concrete realizations of the 
abstract theory such systems include a variety of types of equations, 
such as integro-differential equations, differential equations in an in­
finity of unknowns, and so forth. 

5. Singularities. Isolated singularities may be classified, as in clas­
sical theory, under the headings: (1) removable singularities, (2) poles, 
(3) essential singularities. An isolated singularity is removable if it 
disappears when a proper definition is given to the function at the 
point in question. We can prove Riemann's theorem: an isolated 
singularity z0 is removable if ||#(2)|| is bounded in the neighborhood 
of z0. An isolated singularity z0 is a pole if, for a suitable positive 
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integer ra, (z-~Zo)mx(z) has a removable singularity at z0. The smallest 
admissible integer m is called the order of the pole. An equivalent 
definition may be based upon the nature of the Laurent expansion 
about the point z0. By Lemma 1 and Riemann's theorem we may show 
that if, for each ƒ in £*, fx(z) has a pole of order not greater than m 
at Zo, then x(z) has a pole of order not greater than m; and if the pole 
is of order exactly m, then there is at least one ƒ in £* such that fx(z) 
has a pole of order m at ZQ. 

Let us consider spaces with denumerable bases. I t appears from 
Theorem 3 that in such a space the singularity of a function x(z) may 
arise either from a singularity of one of the component functions un(z) 
or from the behavior of the series 

00 

*(*) = 22 Uk{z)%k 

as a whole. As an example, consider the Hubert space /2, and the 
function x(z) with components un(z) =zn. Since 

11*0011*-EM". 

it is clear that x(z) is regular if \z\ < 1 , but not defined if \z\ ^ 1 . 
The component functions, individually, give no indication of the fact 
that \z\ = 1 is a natural boundary. 

We can prove, however, that an isolated singularity is always trace­
able to one of the components. 

THEOREM 5. Suppose that the conditions of Theorem 3 obtain in a 
region D: 0<\z — z0\ <R, and suppose that each of the functions un(z) 
is, in addition, regular at z0. Then the series ^2k^i^k(z)xk converges if 
\z — Zo\ <R, and defines a function regular, not only in D, but at s0-

To prove the theorem, consider an element ƒ of £*, and the series 
00 

fx{z) = X «*(*)ƒ(**). 

The terms of the series are regular if 0 ̂  | s — JS0| <R* If 0<Ri<R, 
there exists a constant M such that 

J2 uk(z)f(xk) ^ M 

if | s —2o| = ^ i and » = 1, 2, • • • . The same inequality must hold if 
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0 g | s — #o| <Ri> by the maximum modulus theorem. Hence, letting 
n—>oo, we deduce that |jfc(s)| <g j|f if 0 < | s —s0| ^Rv By Lemma 1 
we know that x(z) is bounded in the same range of z. By Riemann's 
theorem, then, the possible singularity at z0 is removable. The con­
clusion of the theorem is now easily proved. 

6. Resolvents. I t has long been recognized that the methods of the 
theory of functions of a complex variable are important in the theory 
of linear transformations. F. Riesz, in his monograph on the subject 
of infinite systems of linear equations (F. Riesz [l, pp. 117-121]) in­
dicates briefly the potentialities of the calculus of residues as a means 
of studying the spectrum and the characteristic manifolds of a linear 
transformation. 

Let T be a linear transformation of the Banach space E into itself. 
If the transformation T\= T—XJ (I the identity) maps E into itself in 
a one-to-one fashion, the inverse transformation, denoted by R\, will 
also be linear. We shall call R\ the resolvent of 7\ and the set of values 
of X for which R\ is defined the resolvent set % All values of X not in ^ 
belong to the spectrum of T. A number X is said to be in the point 
spectrum of T if it is a characteristic value, that is, if there is an 
XT^O such that Tx=\x. 

Our discussion will center around R\ as a function of X. As far as 
questions of analyticity are concerned, it is immaterial whether we 
study R\ or R\x, because of Theorem 2. We shall study R\ directly. 

THEOREM 6. The resolvent R\ is analytic and regular in the resolvent 
set (which is open, but not necessarily connected). If\ and ix are in ^ , 

(1) RK - R, = (X - v)R\R», 

(2) (dn/d\n)R* = nlR?\ 

The set ^ contains every X such that |X| è | | r | | , and f or these values 

00 

(3) *x = - E x—r»-1. 

If C is a contour enclosing the spectrum of T, then 

(4) T = ; f \Rxd\. 
2wi J c 

Formula (1) is the well known functional equation of the resolvent, 
familiar in the theory of integral equations. Formula (3) is the Neu­
mann expansion of the resolvent, in abstract form. Formula (4) ap-
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pears to have been overlooked until now. For the proof of ( l)-(3), see 
Taylor [2]. To obtain (4), multiply (3) by X and integrate, after 
deforming the contour, if necessary. Other references are: Stone [l, 
pp. 139-141]; Hildebrandt [l, pp. 195-199]; Nagumo [ l ] ; Taylor [6, 
pp. 590-593]; Lorch [ l ] . 

The resolvent set is the maximal domain of regularity of R\. All 
the singular points of R\ belong to the spectrum of P, and a point of 
the spectrum is a singularity of R\, provided that it is a limit point 
of the resolvent set. The resolvent R\ is regular at infinity, and van­
ishes there, by (3). Hence, by Liouville's theorem, it is either identi­
cally zero (in the trivial case that the space E consists of a single 
element), or the spectrum of T contains at least one point. 

With each simple closed contour C lying in ^ we may associate a 
transformation P defined as follows : 

(5) P = ; f Rxd\, 

These transformations play a fundamental rôle in the study of the 
singularities of R\. Their use in studying the spectrum has recently 
been indicated by Lorch. We summarize the salient properties of 
these transformations in a theorem (Lorch [l, Theorems 5 and 6]). 

THEOREM 7. The transformation P is a projection, that is, P2 = P. It 
is permutable with T. If C\ and C2 o,re two contours in ^ , and if Pi, P 2 

are the corresponding projections, PiP^P^Pi, and P1P2 — P1 if G lies 
inside G, while P1P2 = 0 if G lies outside G. 

In proving this theorem, and in many other calculations involving 
contour integrals, equation (1) provides a valuable key. I t may be 
shown that P = 7 if and only if the spectrum of T lies within C, and 
that P = 0 if and only if the spectrum of T lies outside C. 

A partial analysis of the structure of T and R\ is possible with the 
aid of P . There is not space in this paper for a detailed account. Let 
us consider merely the case of an isolated point X0 of the spectrum of 
r , that is to say, an isolated singularity of R\. Let C be a small con­
tour inclosing X0 but no other point of the spectrum. Then the Laurent 
expansion of R\ is 

(6) i?x = E (X - Xo)M„ + E (X - Xo)—5», 
n=0 n=l 

where 
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Bn = — : f (X - ^y-'RxdX, n = 0, ± 1 , ± 2, • • • , 
2iri J c 

and we understand that An — B-n. One can show that Bn+i=T\0Bn, 
n = l, 2, 3, • • • . Also, Bi= — P, and so 

(7) Bn = - r£" \p , » = 1, 2, 3, • • • . 

The simplest case is that in which X0 is a pole of R\. 

THEOREM 8. If Xo is a pole of R\, it is in the point spectrum of T. 
If x is a corresponding characteristic element, Px=x. A sufficient, but 
not necessaryj condition for Xo to be a pole is that P project E into a 
finite dimensional linear manifold. 

To prove the first statement, let m be the order of the pole. Then 
from (6) we infer that Bm^O and Bn = 0 if n>m. Let y be chosen so 
that x = Bmy9é0. Then T\Qx = Bm+iy = 0y by (7). We may also prove 
that A0T\Q = I —P. Hence we see that Px=x. 

To prove the second part of the theorem, we define 

00 

(8) Sx = £ (X - \o)-nBn. 

I t is easily proved that S\ is regular if X^X0, and that S\P = S\. 
Furthermore, 

(9) 5 x r x = P . 
Now suppose that the range E0 of P is finite dimensional. Within £ 0 , 
P coincides with the identity. From the above remarks we therefore 
conclude that ox is essentially a transformation of Eo into itself, and 
that it is, within E0} the resolvent of T. Its singularity at X0 is there­
fore that of the resolvent of a finite matrix, namely, a pole. 

There is a large class of transformations T for which the only singu­
larities of R\, aside from X = 0, are poles. The most familiar case is 
that when T is completely continuous. I t is easy, in this case, to show 
that the only possible limit point of the spectrum is the origin. For 
an isolated singularity XOT^O it is readily proved that P is completely 
continuous and that its range E0 is finite dimensional. Theorem 8 
then shows that X0 is a pole of the resolvent. This argument has been 
pointed out by several people (Schauder [l, p. 193]; Hildebrandt [l, 
p. 198]; Nagumo [l, pp. 79-80]). An extension to transformations 
which are in a sense "nearly" completely continuous has been indi­
cated in various places (Hildebrandt, loc. cit. ; Nikolskij [l ] ; Yoshida 
[1.2]) . 
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In case the only singularities of R\ aside from X = 0 are poles, the 
transformation JS=X~"1 carries R\ into a meromorphic function which 
may be expanded by Mittag-Leffler's theorem. If the number of poles 
is finite, R\ is rational, and we get an explicit partial fraction repre­
sentation. In fact, since R\ vanishes at infinity, it is equal to the sum 
of its principal parts at the poles Xi, • • • , Xn. If we enclose each pole 
in a small contour C31 and denote the corresponding projection (5) 
by Py, we find, from (6), that 

do) #x = - Z Z (x - \t) rijp* 

where my is the order of the pole Xy. By integrating around a contour 
enclosing all the poles we find the relation 

(11) Pi + • • • + Pn = / . 

Finally, by combining (4) and (10), we find that if Xi, • • • , Xr are 
simple poles, while Xr+i, • • • , Xw are multiple poles, 

(12) r = 2 > / P / + r È Py. 
j—X j W + 1 

Formulas (10)—(12) generalize certain results in the theory of finite 
matrices (Frobenius [ l ] ; Schwerdtfeger [l, 2, 3]). In case the poles 
are all simple, T is completely reducible. This is the abstract general­
ization of the reduction of a matrix to diagonal form. 

I t is of some interest to record that if E is the Hubert space I2, 
and if the resolvent is defined by an infinite matrix with elements 
Pty(X), then if T is either Hermitian or unitary, the spectrum of T 
consists of the singular points of the functions Pi-y(X), together with 
the limit points of such singularities. This does not hold true for an 
arbitrary T, however (Wintner [l, pp. 178 and 213-214]). 

7, Functions of linear transformations. Formula (4) of §6 may be 
generalized as follows: Let D be a fixed simply connected open set 
containing the spectrum of T. Let J be the class of all single-valued 
numerical functions P(X) which are holomorphic in D. This class J 
is a commutative ring. Let us define 

(1) F(T) = - — f F(\)Bidk, 
ITZJ C 

where C is a contour lying in D and surrounding the spectrum of T. 
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If F(X) =]C*~o#nXn is an entire function, formula (3) of §6 enables us 
to show that F(T) =]£w%aw7X 

THEOREM 9. The class of all linear transformations F(T) generated by 
(1) is a commutative sub-ring of the ring of all linear transformations 
of E into itself. The mapping defined by (1) is a homomorphism. 

The proof of the theorem consists in showing that the correspond­
ence FÇh)—>F(T) preserves sums and products. The preservation of 
sums is trivial. Suppose that F(\) and G(K) are in J. If T is a contour 
in D, enclosing C, and X is on C, 

G(X) = — | —^ dp. 
X 

i r GO*) 

2iri J r n —-

If we substitute the above formula into the integral 

~ — f F(\)G(\)R*d\ 
2iri J c 

reverse the order of integration, and use formula (1) of §6, the above 
integral around C is found to have the value F{T)G{T). This proves 
that products are preserved by (1). 

An immediate and important consequence of Theorem 9 is that if 
F(K) belongs to y and has no zeros in D, then F(T) has a multiplica­
tive inverse [F(T)]~X; the inverse corresponds to 1/.F(X), and may be 
written I/F{T). 

Formula (1) may be written in the equivalent form 

by recalling that -Rx=(r~X7)""1= —(XI— T)~K In the finite dimen­
sional case this formula seems to be due to Poincaré, who used it 
in the study of continuous groups (Poincaré [l , 2, 3]). I t has ap­
peared elsewhere (Buhl [l, pp. 37-38]; Schwerdtfeger [l, p. 311]; 
Giorgi [l, p. 7] ; Wedderburn [l, p. 130]). A special case of the for­
mula was used by Hille [l, pp. 3 and 22] in studying semi-groups 
of transformations in Banach spaces. Theorem 9 seems to be new, and 
apparently formula (1) itself is also new in the generality with which 
it is presented here. 

As an interesting application, we shall use the above theory to 
solve the linear differential equation 

(3) dnx/dtn + axd
n~xxldtn-x + • • • + anx = y{t) 
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with the initial conditions 

(4) *(0) = tf'(O) = . . . « *<*-*>(<)) = 0. 

The coefficients ai, • • • , aw are assumed to be constants, and ;y(0 is a 
given function, continuous on the interval [0, l ] . 

If C is the Banach space of functions x(t) continuous on [0, l ] , let 
Tx{ • ) =y( • ) mean that 

(5) y(t) = I x(s)ds. 
J o 

One may show without trouble that the solution of the integral equa­
tion 

x(i) - X I x(s)ds = y(i) 
0 

is 

1 1 r* 
xit) = y(t) I e^^s)lxy(s)ds. 

A X2 J o 

(6) 

The spectrum of T consists of the single point X = 0, and the resolvent 
of T is defined by (6). 

The differential system (3) and (4) is equivalent to the equation 

(7) x + aiTx + • • • + anT
nx = Tny. 

If F(X) = l+ai\+ • • • +an\
n, (7) becomes F(T)x = Tny. Since FÇK) 

and 1/FÇK) are regular at X = 0, and hence in the neighborhood of the 
spectrum of Tt the inverse of F(T) exists, and the solution of (7) is 

x = (T"/F(T))y. 

Thus, using formula (1), 

l r xn 

(8) x = I R*yd\, 
2TiJc F(X) y 

where C is a contour enclosing X = 0 and excluding the zeros of .F(X). 
Since the resolvent is defined by (6), (8) gives us an explicit means of 
calculating x(t). I t is convenient to make the substitution s=X _ 1 . We 
then obtain 

(9) x{t) . y{s)ds I & f 

27TÎ */0 •/ r 2n + aizn_1 + • • • + an 

where T is a contour enclosing the roots of the polynomial zn+a\zn~~l 
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+ • • * + # n . Formula (9) is due originally to Cauchy (see Darboux 
[i]). 

8. Analytic functions of an abstract variable. In this section we 
shall survey briefly the theory of analytic functions where both the 
domain and range of the functions are Banach spaces. This theory 
has its roots in ideas which go back to Volterra and other pioneers in 
functional analysis. The most important early impetus was given by 
Fréchet, who in a series of papers developed the notions of functional 
polynomials and power series [l, 2, 4] and pointed the way to a 
successful calculus based upon his definition of a differential [3]. 
The work of Gateaux [l, 2] sketched the outlines of a theory of 
analytic functionals. The first systematic abstract theory of analytic 
functions was developed by Martin [ l ] . He was a pupil of A. D. 
Michal, under whose guidance an intensive study of the whole field 
of analysis and geometry in abstract spaces has been carried on for 
more than a decade (see the interpretation of the abstract point of 
view in Michal [2], and the references to the literature in Michal [l ]). 
Various applications of the theory, in the shape given it by Martin, 
have appeared (Michal and Clifford [ l ] ; Michal and Martin [l]) . 

An abstract theory of analytic functions, along the lines indicated 
by Gateaux, was announced by Graves [ l ] , and independently by 
Taylor ([ l and 5 ] ; see especially the footnote on p. 466 of [5]). 
In Martin's theory the basic notion is that of a power series expansion. 
The terms of a power series are homogeneous polynomials. For the 
literature on polynomials, see Fréchet [l, 4 ] ; Martin [ l ] ; Mazur 
and Orlicz [ l ] ; Highberg [l, 2 ] ; Taylor [3]; Banach [2]. In the 
theory of Graves and Taylor, F(x) is said to be holomorphic in a re­
gion D if it is continuous there and if the limit 

SF(x; y) = lim (F(x + \y) - F(x))/\ 
X->0 

exists for each y in the Banach space and each x in the region D. It 
can be shown that BF(x; y) is the Fréchet differential, and that F(x) 
is analytic in the sense of Martin. The two different approaches re­
sult in the same general theory. There are certain connections be­
tween the above ideas and the work of Fantappié [l, 2] on ana­
lytic functionals. Wintner's theory of regular power series [2] is 
closely allied to the abstract theory described above. 

One illustration of the general theory is to be found in the study of 
resolvents. If we regard the linear transformation T as a variable, 
and denote the resolvent by RÇK, T), the resolvent is an analytic 
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function, not only of X, but of T as well.3 The Fredholm theory pro­
vides an explicit exhibition of the dependence of the resolvent upon 
X and T. An abstract treatment of the Fredholm determinant and 
first minor was given by Michal and Martin [ l ] . Closely allied re­
sults, for transformations of finite norm in Hubert space, were given 
by Smithies [ l ] , though without any explicit use of a theory of ab­
stract analytic functions. I t would seem to be worth while to pursue 
the study of R(ky T) and of the functions F(T) defined in §7 from 
this general point of view. 

A theory of analytic functions from Riemann's point of view may 
be built up by starting from a real Banach space B, and constructing 
a complex Banach space in much the same way that the complex 
numbers are formed from the real numbers. The only part of the con­
struction which offers the least difficulty is the defining of a suitable 
norm of the complex element x+iy, where x and y are in the real 
space B. That (||#||2 + ||:y||2)l/2 = | |#+^y|| will not do, in general, was 
pointed out in a paper by Michal, Davis, and Wyman [l ]. A satisfac­
tory definition is the following, due to Taylor (Michal and Wyman 
[ l , p . 249]): 

||* + iy\\ = sup ( I ƒ(*) |2 + I f(y) I2)1/2, ƒ G B*. 

With the complex Banach space so constructed it is possible to de­
velop analogues of the Cauchy-Riemann equations, and a correspond­
ing notion of biharmonic functions (Taylor [4]). It is also possible 
to extend a "real" analytic function, defined by a series of homogene­
ous polynomials, into the complex Banach space (Taylor [3, pp. 
312-315]). This process utilizes certain relations between abstract 
polynomials and their polars. There are various unsolved problems 
connected with bounds and inequalities which make the present state 
of this work unsatisfactory. 

There is a converse problem: can every complex Banach space E 
be decomposed into a real and an .imaginary part? The question may 
be put in the following form (cf. Michal and Wyman [l, Theorem 3]) : 
does there exist a continuous transformation T of E into itself, hav­
ing the properties T2x = x, T(x+y) = Tx + Ty, T(ax)=âTx? We may 
call such a transformation a conjugation. Let us call a subset M of E 
a maximal essentially real linear manifold if 

3 In this connection we note that a function F(\, x) of a complex variable X and 
a Banach variable x is analytic in the pair X, x if it is analytic in each variable sepa­
rately (Taylor [5, Theorem 3.2]). Whether the like is true of functions of two abstract 
variables is at present unknown. 
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(a) it is closed under addition and under multiplication by real 
numbers; 

(b) x and ix are both in M only if x — 0; 
(c) M is not a proper subset of any set with properties (a) and (b). 

Then it is not difficult to show that there exists a conjugation of E if 
and only if there exists in E a closed and maximal essentially real 
linear manifold. This whole problem has been studied by Taylor [7], 
but no complete solution has been reached. 
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