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In this paper, we obtain a characterization of linear spaces which 
may be normed so as to become complete, linear, normed metric 
spaces. In this connection, K. Kunugui1 and M. Fréchet2 have shown 
that every metric space S is isometric with a subset of a complete, 
linear, normed metric space. I t follows from our result that if the 
cardinal number of 5 is the limit of a denumerable sequence of cardi­
nals, then there is no complete, linear, normed metric space isometric 
with S. Results on topological spaces which may be rendered linear, 
normed metric spaces and complete, linear, normed metric spaces 
have been given by A. Kolmogoroff3 and B. Z. Vulich.4 

I t will be assumed that the reader is familiar with certain elemen­
tary portions of the theory of linear and metric spaces, and with trans-
finite cardinal and ordinal numbers.5 Using the generalized continuum 
hypothesis and normal order theorem, we prove the following: 

THEOREM. A necessary and sufficient condition that a linear space 
may be made a complete, linear, normed metric space by a suitable 
definition of norm is that the cardinal number of its Hamel basis should 
not be the limit of any denumerable sequence of cardinals which precede it. 

A Hamel basis of a linear space S is a subset T of S such that every 
element of S is a linear combination, with real coefficients, of a finite 
number of elements of T, and there is no proper subset of T with this 
property. The following properties of a Hamel basis will be used in 
demonstrating the theorem, and are given without proof: 

(a) A linear space 5 has a Hamel basis.6 
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(b) 5 may have many distinct bases, but these must have the same 
cardinal number. 

(c) If the basis T of S is nondenumerable, then 5 and /, the respec­
tive cardinals of 5 and T, are identical. 

(d) The representation of every element x of S as a linear combina­
tion, with nonzero coefficients, of a finite number of elements of a 
given basis T of S is unique. 

1. Sufficiency. We note that a linear, normed metric space with a 
finite Hamel basis, of cardinal n, is homeomorphic with euclidean 
w-space ; hence, is complete. To prove the sufficiency part of the theo­
rem we need, therefore, consider only the infinite case; that is, we 
must show that a linear space whose basis is of infinite cardinal not 
the limit of any denumerable sequence of cardinals which precede it 
may be rendered complete by a suitable definition of norm. Such 
cardinals are either non-limiting, infinite cardinals, or limiting cardi­
nals which are not the limit of any denumerable sequence of cardinals. 
First, let a be a non-limiting, infinite cardinal, and /3 its immediate 
predecessor in the normal order of cardinals. By the generalized con­
tinuum hypothesis, 2# —a. Let 5 be the linear space of all bounded, 
real functions defined on a given set of cardinal /?, the sum of two func­
tions and the product of a function by a real number being defined in 
the customary way. S is of cardinal^ = 2* = a. With v{f) =l.u.b. | / ( * ) | , 
the least upper bound of \f(x) | , as norm, 5 is evidently a complete, 
linear, normed metric space. For a>c, as previously noted, every 
basis of S has the same cardinal a as 5. For a — c, S certainly has no 
finite basis and, since complete, has no denumerable basis, as will 
be shown in the proof of the necessity part of the theorem. Hence, by 
the continuum hypothesis, if 5 is of cardinal c, its basis is also of cardi­
nal c. We have thus defined, for every non-limiting, infinite cardinal a, 
a complete, linear, normed metric space with basis of cardinal a. 
Any linear space S' with basis of cardinal a is isomorphic with S. 
For, if T and T' are respective bases of S and S', a biunique corre­
spondence exists between them. I t then follows from the uniqueness 
of the representation of the elements of a space as a linear combina­
tion of basal elements, that S and S' are isomorphic linear spaces. 
Hence, by letting the norm of every element of S' be identical with 
that of its mate in S, the linear space S ' is made complete. Now, 
let a be a limiting, infinite cardinal which is not the limit of any 
denumerable sequence of cardinals which precede it. For every car­
dinal j8<a, let l p be a set of cardinal fi such that, for every 7</3, 
Ty is a subset of Tp. Such a class of sets may be obtained, for ex-
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ample, by normally ordering a set of cardinal a, and letting Tp be 
the proper initial segment of the order which introduces the cardinal 
]8. Let T—^p<aTp and let Sp be the set of bounded, real functions 
defined over T, arbitrarily on Tp and identically zero on T—Tp. The 
cardinal number of Sp is the immediate successor of j8, by the gen­
eralized continuum hypothesis, and the cardinal number of S = ^p<aSp 
is a. As in the preceding case, S may be rendered a linear, normed 
metric space by defining the sum of two functions of S and the prod­
uct of a function of S by a real number in the manner customar for 
functions, and by letting v{f) =l .u.b. \f{x) | , for every f(x) in 5. The 
space S is a complete metric space. For, let {fn(x)} be any convergent 
sequence of elements of S. Then {fn(x)} is a uniformly convergent 
sequence of functions. Let /3W be the smallest cardinal such that fn(x) 
is identically zero on the set T—Tpn. Then fin<a and, since a is not 
the limit of any denumerable sequence of cardinals which precede it, 
there exists a cardinal (3<a such that ]8n<j3, for all n. The functions 
of the sequence {fn(x)} are thus identically zero on T— Tp and, since 
the sequence is convergent, its limit, f(x), is also identically zero on 
T—Tp. Moreover, f(x) is bounded, for it is the limit of a uniformly 
convergent sequence of bounded functions. Hence, f(x) is in Sp and 
thus in 5. The linear, normed metric space 5 is therefore complete. 
I t then follows from the isomorphism of linear spaces whose bases 
are of the same cardinal, that every linear space with basis of cardinal 
a may be normed so as to be complete. 

2. Necessity. We show that a linear, normed metric space is not a 
complete metric space if the cardinal number of its basis is the limit 
of a denumerable sequence of cardinals which precede it. We prove 
the following: 

LEMMA. If T is a nondense, linear subspace of a linear, normed 
metric space S, then T is nowhere dense in S. 

PROOF. Let <rbea sphere of elements of S. Then ca, the set obtained 
by multiplying the elements of a by a real number c^O, and x+a, 
the set obtained by adding to the elements of a a given element x 
of 5, are also spheres in S. Since T is nondense in 5, there is a sphere 
a in 5, containing no point of T. Let {cn} be a sequence of reals con­
verging to zero. Then, for every x in T, the sequence {x+cncr} of 
spheres converges to x. But these spheres contain no points of T. 
Hence, T is nowhere dense in S. 

Suppose 5 is a linear, normed metric space with a denumerable 
basis, whose elements are £i, £2, • • • , £n, • # * • Let Sn be the linear 
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subspace of 5 with basis £1, £2, • • • , £n. Then 5 = ^ 1
0 0 5 n . Since Sn 

has a finite basis, it is a complete metric space; hence, closed in S. 
But a closed subset of a metric space is nondense in the space. 
Therefore, by the lemma, Sn is nowhere dense in S, and S, as the limit 
of ^o nowhere dense sets, is of the first category, and therefore not 
complete. 

Finally, we construct, for every nondenumerable cardinal a which 
is the limit of a denumerable sequence of cardinals, a linear space of 
cardinal a, and hence, with basis of cardinal a, which cannot be 
normed so as to be rendered complete. Since, as noted above, two 
linear spaces are isomorphic if their bases are of the same cardinal, 
it follows that every linear space of cardinal a has the desired prop­
erty. Now, let {an} be the sequence of consecutive, increasing cardi­
nals which converges to a, and let Tn be a set of cardinal an such that, 
for every n, Tn is a subset of Tn+i. Let T=^T,i Tn. Let Sn be the set of 
bounded, real functions defined over T, arbitrarily on Tn and zero 
elsewhere, and let S=^2iSn. The cardinal number of Sn is 2an=an+i, 
by the generalized continuum hypothesis, and the cardinal number of 
5 is a=y%2?an+i. S is rendered a linear space, if the sum of two func­
tions and the product of a function by a real number are defined in 
the usual way. Suppose 5 is further rendered normed and metric by 
any given choice of norm for the elements of S. Sn is obviously a 
linear, normed metric proper subspace of S. Moreover, Sn is a non-
dense subset of 5. For there are only a$%i = an+i sequences composed 
of elements of Sn and, since S is of cardinal a>an+i, there exists an 
element of S not a limit point of Sn. By the lemma, Sn is nowhere 
dense in 5 and S —J*,? Sn is of the first category. Hence S is not com­
plete. 

As a consequence of the necessity part of this theorem, it immedi­
ately follows that a metric space whose cardinal number is the limit 
of no denumerable sequence of cardinals is homeomorphic, hence iso­
metric, with no complete, linear, normed metric space. 

PITTSBURGH, PA. 


