
ON LINEAR COMBINATIONS OF QUADRATIC FORMS 

LLOYD L. DINES 

The characteristics of linear combinations ^2\iQi(x) of a given set 
of real quadratic forms 

(1) Qi(x) s ] £ OkiXkVh t = 1, 2, • • • , w, 

have been considered in several recent papers.1 

One of the theorems in my earlier paper may be stated as follows: 

A necessary and sufficient condition that there exist a linear combina-
tion^XiOiix) which is positive definite is that there exist no set of points 
xi = (x{, xi, * • • , a£)3^(0, • • • , 0) (j = l, 2, • • • , r) such that 

r 

(2) E/*KM*0 = 0, • = 1, 2, • • • ,m, 

the coefficients tij being positive. 

Shortly after the publication of this paper, Fritz John kindly called 
my attention to the fact that a closely related result is contained in 
an earlier paper of his.2 

Certainly John's paper contains essentially the "sufficiency" half 
of the theorem quoted above. Furthermore it introduces a very in
teresting suggestion in noting that the validity of relations (2) implies 
the existence of a quadratic form 

n 

B(x) as ^ bklXkXi 

which is definite or semi-definite, and such that 

X) <*ki'bki = 0, i = 1, 2, • • • , m. 
&,z=i 

Presented to the Society, February 27, 1943; received by the editors August 31, 
1942. 

1 Finsier, Über das Vorkommen definiter und semidefiniter Formen in Scharen 
quadratischer Formen, Comment. Math. Helv. vol. 9 (1937) pp. 188-192. Hestenes 
and McShane, A theorem on quadratic forms and its application in the calculus of 
variations, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 501-512. Dines, On the mapping 
of n quadratic forms, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 467-471. 

2 A note on the maximum principle for elliptic differential equations, Bull. Amer. 
Math. Soc. vol. 44 (1938) pp. 268-271. 
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This condition, unlike those occurring in other treatments of the 
problem, focuses attention on the coefficients of the given forms. Be
cause of its purely algebraic character and its possible usefulness in 
applications it seems worthy of further study, and that is the purpose 
of the present note. In Theorem I there is an analysis of possibilities 
in terms of this relationship, and in Theorem II there is an equiva
lent statement from a different and possibly interesting point of view. 

1. Orthogonality of quadratic forms as to their coefficients. The 
bilinear form consisting of the sum of products of corresponding co
efficients of two quadratic forms 

n n 

Q(x) = 2 dkiXkXh B(x) s ]T bkiXkXU aki = aik, bki = bu, 

will be denoted by (QB). That is3 

n 

(Q-B) = H akVbkl. 
k,l=l 

Obviously (Q • B) = (B • Q) ; and for a set of forms such as those in 
(1). (2>*G«--B)=2>«(Q<-.B). Also it may be easily verified that 
(QB) is invariant under the group of orthogonal transformations 
on xi, X2, - - • , xnr 

If the two quadratic forms Q(x) and B(x) satisfy the relation 
(Q • B) = 0 they will be said to be orthogonal as to coefficients (or 
c-orthogonal) .4 

Relative to a given system of real quadratic forms (1), we now state 

THEOREM I. (a) A necessary and sufficient condition that there exist 
a definite linear combination X)XtQ» is that every quadratic form c-or
thogonal to all the Qi be indefinite. 

(b) A necessary and sufficient condition that every linear combination 
y^KiOi be indefinite is that there exist a definite quadratic form c-orthog
onal to all the Qi. 

(c) A necessary and sufficient condition that there exist a semi-definite 
3 M. R. Hestenes has kindly called attention to the fact that this function of the 

coefficients of two forms was used by L. Fejér in a paper entitled Über die Eindeutigkeit 
der Lösung der linearen partiellen Differentialgleichung zweiter Ordnung, Math. Zeit. 
vol. 1 (1918) pp. 70-73. Fejér obtained a theorem which may be stated in our notation 
as follows: If Q(x) and B(x) are both non-negative, then (Q-B) ^ 0 . 

4 However, to avoid bothersome trivialities, we shall assume that an assertion 
(Q-B) = 0 implies per se that each of the forms Q-B has at least one nonzero coeffi
cient. In the same spirit, the notation ^jKiQi implies per se that at least one X» is 
different from zero. 
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(but no definite) linear combination ^XiQi is that there exist a semi-
definite (but no definite) quadratic form c-orthogonal to all the Qi. 

2. Proof of Theorem 1(a). In view of the theorem quoted in our 
introduction, the validity of 1(a) is an immediate consequence of the 
following lemma. 

LEMMA. A necessary and sufficient condition that the quadratic forms 
(1) admit relations (2) is that there exist a definite (or semi-definite) 
form B(x) such that 

(3) (QrB) - 0, i = 1, 2, • • • , m. 

The first half of this lemma is due to John, as is the following neat 
proof of it. 

Suppose there exist relations (2). These may be written 

r n 

]C Mi ]C auXkXi = 0, i = 1, 2, • • • , w, 
y = l k,l=l 

or 
n r . . 

]C au'bu = 0 where bu = ]C /*i#**«. 

Hence the quadratic form B(x) with coefficients bki is c-orthogonal 
to every Qi(x). 

Furthermore the form B(x) is definite or semi-definite, since 

n n / r • \ r / n • \ ^ 

•#(#) s X) bkixkxi = 2 ( ]C/*>***') #*#* = S^if S #*•#*) • 

Conversely, suppose there is a definite (or semi-definite) form B 
satisfying (3). From the assumption of definiteness, it can be ex
pressed in the form 

n r / n , \ 2 

B(x) = ]T) bklXkXl= 2^Mi( ^OikXk) 

where the coefficients a{ are suitably chosen constants and the ju? are 
positive constants. Hence 

*• 

bki = S Mi«fc«z. 

And in view of (3) 
n . r , 

HI aki X) Vj^kai = 0, i = 1, 2, • • • , ni> 
k,l=l * - l 

and equivalently 



I943J QUADRATIC FORMS 391 

r n . , 

]C Mi X) akl<*k<Xl = 0, i = 1, 2, ' • • , My 

whence follows (2) with xi = a{. 

3. Proof of Theorem 1(b). This proof is facilitated by the following 
corollary. 

COROLLARY OF I (a). If two quadratic forms are c-orthogonal and one 
is definite, then the other is indefinite. 

The sufficiency part of 1(b) follows immediately. For if a definite 
form B is c-orthogonal to every Qi it is c-orthogonal to every linear 
combination ^XiQi, and hence by the corollary every such linear 
combination is indefinite. 

To prove the necessity part of 1(b), we assume that every linear 
combination ^KiQi(x) changes sign. On account of the homogeneity 
property Q(tx) = t2Q(x), we are indeed justified in assuming that every 
such linear combination changes sign as x varies on the unit hyper-
sphere ||x|| = 1 in the ^-dimensional x-space. 

The set of points SDîi with coordinates represented by 

2Ki: (Qi(*), Q»(*)> • ' • ,Q«(*)), Ml = L 

in m-dimensional space is closed and bounded. Hence, in view of our 
assumption, its convex extension C(Wli) contains the origin of that 
m-dimensional space as an inner point.5 This origin can therefore be 
the centroid of positive masses at a suitably chosen finite and truly 
m-dimensional subset of points6 

9W2: (Gi(*p) , Ö2(*p), • • • , Qm(xp))> p = 1, 2, • • • , r. 

To the finite set 9K2 we arbitrarily adjoin the set of n points 

SDî3: (Gi(*0, ( M * 0 . • • • . Qm(*0), i = 1, 2, • • • , », 

where each w-part i te n u m b e r xi=(x{, x%y * • * , Xftj nas an zero com
ponents with the exception that x* = 1. 

The set Sft̂ rSD^+SD^ is a truly m-dimensional finite set, and its 
convex extension contains the origin as an inner point. Hence this 
origin can be the centroid of positive masses at all7 points of Sft; 
and the analytic expression of this fact leads to the system of rela
tions 

5 Cf. Dines, Convex extension and linear equalities, Bull. Amer. Math. Soc. vol. 42 
(1936) p. 357 Theorem 3. 

• Ibid. p. 358. 
7 Ibid. p. 358 Theorem 4. 
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(4) E Mj&OO + E 'pQi(.*p) = 0, * = 1, 2, • • • , tn, 

where each fx3- and pp is positive. 
Applying to the relations (4) precisely the same type of argument 

as was applied to relations (2) in proving the lemma of §2, we arrive 
at the existence of a quadratic form B(x) which is c-orthogonal to all 
the Qi, which has the formal expression 

n r / n \ 2 

and is therefore certainly definite. This completes the proof of 1(b). 

4. Proof of Theorem 1(c). This follows almost immediately from 
1(a) and 1(b). First suppose there is a X ^ Q * which is semi-definite, 
but none which is definite. Then by 1(b) there is no definite form 
c-orthogonal to all Qi, and so by 1(a) there must be one which is semi-
definite. 

Conversely, suppose there exists a semi-definite (but no definite) 
form ^-orthogonal to all the Qi. Then by 1(a) there exists no definite 
linear combination ^XiQu and hence by 1(b) there must exist a semi-
definite ^XiQi-

5. The system of equations (Qi B)=0. The substance of Theorem I 
can be equivalently expressed in terms of the system of equations 

(5) (Qi-B) = 0, i = 1, 2, • • • ,w, 

where the Qi are given quadratic forms and B is a quadratic form re
stricted by the system of equations. 

THEOREM I I . The system of equations (5) 
(a) can admit only indefinite solutions B if the Qi admit a definite 

linear combination, 
(b) admits a definite solution B if every linear combination of the Qi 

is indefinite, 
(c) admits a semi-definite (but no definite) solution B if the Qi admit 

a semi-definite (but no definite) linear combination. 

I t will be noted that the system certainly admits some solution B 
except in the case where there exists a definite linear combination of 
the Qi. In this latter case there may be indefinite solutions or no solu
tion as illustrated in the following two examples. 

EXAMPLE 1. The two forms 



i943] A CONJECTURE DUE TO EULER 393 

2 2 2 2 
Qi = 2 x i — #2, Q2 = #1 — 2x2 

admit the definite linear combination <2i —Q2=#i+#2> and the cor
responding system (5) admits the indefinite solution B=XiX2. 

EXAMPLE 2. The three forms 

2 2 2 2 
Q\ = 2 # i — £2 , 0 2 = #1 — 2 X2, 0 3 = #1#2 

admit the definite linear combination Qi — 02 — 03= xl—xiXz+xl, but 
the corresponding system (5) admits no solution form B. 

CARNEGIE INSTITUTE OF TECHNOLOGY 

NOTE ON A CONJECTURE DUE TO EULER 
E. T. BELL 

Euler's conjecture (1772) that 

n n n 

Xi + - • • + Xt = % , 

where n is an integer greater than 3 and 2<t<n> has no solution in 
rational numbers all different from zero, is still un
settled even in its first case, n = 4, / = 3. I t may therefore be of some 
interest to note a solution of this equation for any n>3 and any t> 1 
in terms of (irrational) algebraic numbers, which can be made alge
braic integers by suitable choice of a homogeneity parameter, all dif
ferent from zero, all the numbers being polynomials in numbers of 
degree 2d, where 4d^2n — 5 + ( — l) n . If solutions differing only by 
a parameter are not considered distinct, there are at least dl~l sets 
of solutions 

The solutions described are 

Xi = u, x2 = rt-iu, x = (1 + ri) • • • (1 + rt-i)u\ 

Xj = rt-j+i(l + r*_y+2)(l + rt-j+z) • • • ( ! + r«_i)«, j = 3, • • • , t, 

where u is a parameter and the r's are any roots, the same or different, 
of any factor Fn(r), irreducible in the field of rational numbers, of 

n - l 

f(r) = E (», s)rn~s-\ 
s=l 

Received by the editors July 9, 1942. 


