THE BETTI GROUPS OF THE PRODUCT OF
TWO NORMAL SPACES

C. E. CLARK

1. Introduction. Let R; and R; be homeomorphic to open sets of
normal spaces. Furthermore, let each of R; and R; contain infinitely
many points. For these spaces Alexandroff has defined inner Betti
groups.! In this paper the inner Betti groups of the topological prod-
uct R;®R; are studied.

Let #"&Br(Ry), where B" denotes the 7-dimensional inner co-
homology group with the integers as coefficient domain, and let
# & BP(Ry). To these two elements there corresponds an element
4" X @& Brt(Ry X Ry). All such elements with r4p=n generate a
subgroup BI(RiXR:) CB"(R;XR:). We characterize this subgroup
(Theorem 3). In addition, we characterize the factor-group

2(RiX Ry) = B"(R; X Rs)/B}(Ri X Rs) (Theorem 4). In doing so we
show that if #4*€B*(R;) is of order &°#0, and if #°E€B’(Ry) is of
order €750, then to these two elements there corresponds an ele-
ment (4%, 4°) EB3t " (RiX Ry).

To prove these results we employ Alexandroff’s second definition
of the inner Betti groups which uses barycentric subdivisions of cov-
erings.? Furthermore, Freudenthal’s simplicial division of the product
of two simplexes is used.?

2. The groups Bj(K*XK=mod Ce), ¢=1, 2. In this section we
state without proof some facts about products of complexes which are
consequences of [3]. Let K¢ and K< be finite complexes with subcom-
plexes C® and C¢, respectively. Let B” denote the #-dimensional inte-
gral cohomology group. To u"&B7(K*mod C*) and w» EB*(K*mod C%)
there corresponds the product of these cohomology classes
u' Xur SBrte(KeX K« mod C®). We define Bf(K*XK* mod C**) to
be the subgroup of B*»(K*XK<* mod C**) generated by—we could
say consisting of—all »" X« with r+p=n. Let e” and ¢* be the orders
of #" and e, respectively, with the understanding that e =0 when % is
free. Let (a, b) denote the greatest common divisor of ¢ and b with
the understanding that (a, 0) =a.
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1 See [1, 7.2] (Numbers in brackets refer to references at end of paper).
2 See [1,9.22 and 9.4].

3 See [2].
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THEOREM 1. A complete set of relations for the gemerators u” Xur of
1(K*X K= mod C**) is given by

(1 (er, e?)(wr X up) = 0
and
(2) D b+ 2 g = 2 pagiui X ul)

where the p's and q's are integers.

We define B}(K*XKe* mod C¢*)=B»(K*XKe* mod C¢**)/B}
(K*X K=>mod C42). This factor-group will be characterized in a way
suitable for our later discussion.

Let u*&€B*(K* mod C*) be of order ¢*>0 and #°&B?(K* mod C*%)
be of order e’s0. Throughout the paper the superscripts s and o
will be used only for elements of order different from 0, while super-
scripts # and p indicate that no restriction is made on the orders
of the elements. We shall associate with #* and %’ an element
(u®, u°) EBST""Y(K*X K= mod C¢2). To do so let z2°Cu’, fl=e%3
where the dot denotes the coboundary operator, 22 €u°, and f*~1=e"z°.
For any cocycle z let H(z) denote the cohomology class with z&E H(z).
We define

3) B (x| € ).

(e, €%)
We can show that (#°, #°) is independent of the choice of z’s and f’s.

THEOREM 2. The cosets (u®, u°), s+o—1=mn, generate By(K*XK*
mod Ce*), and a complete set of relalions for these generators consists of

4) (% e)(u*, ) = 0

and

) (S Xy = ppen )
(m*, m) el

where we consider only those sums y_pius and Y pjul with the following
properties: the p's are integers, and the orders m* and m° of Y pius
and D piul are the least common multiples of the orders of the terms
piug, 1=1,2, - - -, and pjuj, j=1,2, - - -, respectively.

3. Coverings and projections. We first associate with cofinal sys-
tems of coverings? of R; and R; a cofinal system for R; X R, (our cover-

4 See [1, 3.5].
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ings are finite and consist of open sets). With Alexandroff we say that
a covering is multiplicative® if the intersection of any two sets of the
covering is also a set of the covering. Let {Q¢} and {Q¢} be cofinal
systems of multiplicative coverings of R; and R,, respectively. Let
Qoa= Qe X Qo, Let Q% follow Q= if both Q follows Q¢ and ¥ fol-
lows Q= It is easily seen that { Qe=} is a cofinal system of multiplica-
tive coverings of Ry X Rs.

If @ follows Qe, let S be the canonical projection® of ©? into Q¢;
that is, if M*E€ @b, then SLM? is the smallest open set of Q¢ such that
M*DSEMP. Similarly we have the canonical projection S% of Qf into
Qe if QF follows Qe With these two projections we shall associate the
canonical projection S% of Q% into Qoe, Let M*€ Q* and MPE Q8. It
is easily seen that
(6) Se" x M = s;m" x som”.

By the barycentric subdivision of a covering” is meant that sub-
complex of the nerve of the covering made up of the simplexes whose
vertices are associated with decreasing sequences of open sets of the
covering. Let K¢, K¢, and K** be the barycentric subdivisions of Q¢,
Qe and Q¢=. We shall show that K2« is a simplicial subdivision of
K*XK-e,

First, let the r-simplex ¢ of K¢ be associated with the following
sets of Qe:

(N MDD M,
Similarly, let # of K« be associated with

(® M¢D -+ DM,
Corresponding to these two simplexes there is a set of (»+4p)-sim-
plexes of K¢« in (1-1)-correspondence with the sequences

(9) MoX MyD - - DMiXM;DMyXMiD - DM XM,

where k24, I=j, and k+I/=7+4j+1. But Freudenthal has shown?
that this set of simplexes forms a simplicial division of ¢* X#*. Further-
more, the cells 7 X# determined by (9) form a cell complex that is
isomorphic with K¢ XK=,

5 See [1,9.2].
6 See [1,9.3].
7 See (1,9.22].
8 See [2].
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Each of the complexes K¢, K¢, and K¢ has a special subcomplex?
C¢, C¢, and C%* made up of the simplexes all of whose vertices are
associated with open sets whose closures are not bicompact. We shall
show that C*XKe+K*XC*CC* Indeed, suppose the closure of
each set of (7) is not bicompact. Then the closure of each set of any
sequence of (9) is not bicompact (because the continuous image of a
bicompact set is bicompact, and a factor of a product of two sets is
a continuous image of the product). The same argument holds for a
simplex of C¢, and the above inclusion holds.

Next suppose # is not in C¢ This means that M?, the closure of
the final term of (7), is bicompact. Also suppose # is not in C¢. This
means that %, from (8), is bicompact. Since the product of the
closures of two sets is the closure of the product, and since the prod-
uct of two bicompact sets is bicompact, the last term of (9) has a
bicompact closure. This means that ¢7X# is not in C**, This with the
above inclusion means that C* X K*+K*X Cx= C**, We have proved
this lemma.

LeMMA. The complex Ko« is a simplicial division of K*X K<, and
Cee is the division of C*XK*+K*XC*.

The canonical projections S?, 5%, and S determine the usual
homomorphic mappings p%, p5, and p%, of the chains of K* mod C?,
and so on, into the chains of K* mod C¢ and so on.!® We shall show
that
(10) poald X 1) = pat X o3
In (7) replace the superscript a by b and let the resulting sequence
denote the open sets associated with 7. In the same way we replace
a by B in (8) and (9) to obtain sequences associated with # and
trXt. From (6) and (9) we see that the left side of (10) is associated
with the sequences SSMIX.S8MED - - - . But these sequences are as-
sociated with p%" X pf# because pf is associated with S2MpD - - -
and p3#° is associated with SEMED - - -

The canonical projections 2, S5, and S% determine the usual
homomorphic mappings o3, 0§, and o35 of the chains of K¢ mod C¢,
and so on, into the chains of K* mod C?, and so on.!® From (10) we
have

(11) ow(l" X ) = oof X asf".
Furthermore, these ¢'s determine homomorphic mappings w3 of

9 See [1,9.1].
10 See [1, 2.2].
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B»(K* mod C%) into B"(K® mod C%, s of B*(K* mod C% into
B*(K* mod C¥), and in view of the lemma 745 of B*(K*X K= mod C*?)
into B*(K®*X K? mod C%).!! From (11) we have

(12) mos( X u') = mou X weu .

4. The inner Betti groups of R;X R,. Let B*(R;), B*R:), and
B"(RiXR,) be the inner Betti groups defined in §1. Let #"EB"(R;)
be of order &, and #&B?(R;) be of order &. We shall define
#r Xiar EB*(Ry X Ry). Let um*& 4" and w* & 4* where @ and « are in-

dices of coverings. From (12) we have g (s Xu") =" Xwgu.
Hence we can define

(13) ure X we E @ X P

and determine a bundle independent of the choice of coverings.
A consequence of (2) is

(14) il X 2 qily = 3 piqi(fis X 13

It is possible to find coverings with indices b and 8 so that u™
and u*? are of order &" and &, respectively, (indeed, &7 is in the zero
bundle, and any cohomology class of the zero bundle can be pro-
jected into a zero cohomology class; furthermore, %™ cannot be of
order less than &7). This with (1) gives

(15) (e, e)(mr X @r) = 0.

Let B}(RiXR;) be the subgroup of B*(R;XR;) generated by the
bundles (13) with r+p=n.

THEOREM 3. Relations (14) and (15) are a complete set for the gen-
erators (13) of B}(RiXRy).

Proor. Let the finite sum Zpi,-ﬂ§><ﬁ§=0, r+p=mn, but r and p can
vary from term to term. For some coverings with indices ¢ and a we
have Y_p:i(u®Xur*) =0. Theorem 1 proves that this latter relation
is a consequence of (1) and (2). Hence the original relation is a con-
sequence of (14) and (15) q.e.d.

Equation (12) shows that w3B}(K*XK<* mod Ce*)CB}(K*XK?
mod C%). Hence there is a natural homomorphism I35 of
B3(K*XK* mod C*®) into B3(K*XKf mod C%). This natural
homomorphism is defined as follows. If ¢%*uce is the coset of
B3(K*XK* mod C) that contains the cohomology class u%®
€B*(K*X K= mod C*%), then

1 See [1, 2.33).
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aa aa aa B aa aa
(16) Myp # = ¢ mpu

We shall show that II%II55 =112 Indeed, using (16) and the fact that
Tn%e =12, we have II%Wpaeyse =¢ermiey ™ = porririguce = IEgHrigyce
=TI1%1I5%¢ us= proving the equality in question. We have shown
that [B (K*X K= mod C*=); II35] is a spectrum. Let the direct limit
of this spectrum be denoted by Bj(R; X Ry).

Let #*€EB*(R,) and #°&B°(R;) have orders &0 and &7=0.
We shall associate with these two bundles an element (#°, %)
€ Bt (R X Rs). Consider a cohomology class of the coset (u*2, <),
ueEa’, u*&#°, u* of order &, and »° of order &°. In view of (3)
this cohomology class contains a cocycle which may be written

17

s—1la 7—la
o ~,) (frmte X frta):
with fo—1le=gsgea geecyoe and similar relations with superscript o.
We have

aa a s—-la a o—la  *

(18) aes(17) = @ ~) (oof  Xosf )

because of (11) and the fact that the operation of forming cobound-
ary commutes with ¢5.12 But (o} f*~1%)" = &°032" with the same rela-
tion for superscript o' Hence (18) is in a cohomology class of the
coset (myu™, wgu’). Letting H(z) still denote the cohomology class
that contains the cocycle z, we have using these results and (16) that
Mg(s™, u™)=1I; ¢““H(17) = ¢¥nig H(17) = ¢¥ H(18) = (m3u™, mgu").
Hence we have a unique bundle (@*, %°) €B3t°"'(R1 X R;) defined by

(19) (ue, u'®) € (a°, 4°).
From (4) we obtain
(20) (&2, &) (as, a) = 0.

Furthermore, let the sums )_pia and )_pJaj satisfy the conditions
on the sums in (5). From (5) we have a relation which we label (21).
The relation (21) is obtained from (5) by replacing each « by 4.

THEOREM 4. The elements (4°, 4°), s+ — 1 =n, generate B3(R1 X Ry),
and relations (20) and (21) are a complete set for these generators.

Theorem 4 is a consequence of Theorem 2 and the definition of

12 See [1, Theorem 2.221].
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2(Ri1XRs) as a direct limit. The proof is similar to the proof of
Theorem 3.

THEOREM 5. We have B3(Ri X Ry) = B"(R1X Rs)/Bi(R1 X Ry).

Proor. It follows from (16) that there is a homomorphic mapping
of B*(RyXRs) upon B3(R; X R,).B The kernel of this homomorphism
consists of the bundles of B*(R; X R,;) which contain elements of the
groups B}(K*XK=* mod C%%).® From (12) and (18) we see that this
kernel is precisely B}(R; X Ry).
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