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THEOREM 11. If (a, b) = 1, and m is the product of the distinct prime 
factors of n, then 

{nz/m)\(j>{a2n-b2n). 
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Introduction. This paper solves three characterization problems for 
lattices2 [ l ] . Problem I is to characterize those metric spaces [2] into 
which lattice operations which are consistent with the given metric 
[l , p. 41] may be introduced. Problem II is to characterize those 
members of a rather general class of abstract systems which are 
modular lattices, while Problem III consists in the characterization 
of lattices in an even larger class of abstract systems; 

Problem I has already been solved by V. Glivenko [3]. He showed 
that the property: "Among those elements metrically between [4, 
p. 76; 2] two elements a and b, the element a\Jb is farthest from 0," 
and its dual characterize those metric spaces which are also metric 
lattices with the same metric and least element 0. Our approach to 
Problem I is through the existence of certain metric singularities 
[2, p. 47] in every metric lattice. Our solution also involves certain 
five point transitivities [5, Part I] of metric betweenness. The ab­
stract system involved in Problem II (Problem III) is a wide general­
ization of the concept of a metric space—so general, in fact, that it 
also includes the concept of a modular lattice (lattice). We find it 
not difficult to extend the ideas essential to our solution of Problem I 
to give analogous solutions of Problems3 II and I I I . Briefly, our re­
sults consist in characterizing the three important systems: metric 
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2 Numbers in square brackets refer to the list of references at the end of the paper. 
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This problem appears difficult to us, and we make no at tempt to solve it. 
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lattices, modular lattices, and lattices within three increasingly gen­
eral abstract systems. 

1. A characterization of metric lattices. In this section we shall give 
our solution of Problem I. The metric singularities which we shall 
encounter are pseudo-linear quadruples [2, p. 48]. Such a quadruple 
is one which cannot be imbedded in the Euclidean line, but is such 
that each of the four triples chosen from it can be so imbedded. In 
metric lattices such configurations abound. Every pair of elements 
which are not comparable together with their meet and join form 
such a quadruple. But the existence of "sufficiently many" pseudo-
linear quadruples in a metric space (M, d) is not enough to ensure 
that lattice operations can be introduced in such a way that (M, 5) 
becomes a metric lattice (M, ô, < ) . However, the additional assump­
tion of a weak form of either of two five point transitivities for the 
metric betweenness of (ikf, d) suffices. 

Before we proceed to prove these statements, let us agree on the 
following matters of notation. The symbols (M, ô) represent a metric 
space M with metric ô. For elements a, b, c£ikf we use the notation 
abc to indicate that b is metrically between a and c [4, p. 75; 5, 
Part II] , that is, that b(a, c) = ô(a, b) + d(b, c). This relation has the 
fundamental properties :4 

(a) abc <-» cba. 

(/3) abc - acb <-» b = c. 

We shall frequently refer to the transitivities : 

(h) abc-adb —> dbc. 

fa) abc - adb —» adc. 

which are valid for the metric betweenness of M [4, p. 76; 5, Part II] . 
If (M, 8) is also a metric lattice (M, ô, < ) , then the relation abc is 
equivalent [3 ] to the equations 

(1.1) (a n b) KJ (b r\ c) = b = (aU b) n (bV c). 

These equations define, in fact, a relation of betweenness in arbitrary 
lattices [5, Part II] . We shall also use the notation abc to indicate 
that the equations (1.1) are valid, even when no metric enters the 

4 The second of these statements is intended to be read as, "For each three ele­
ments a, b, CEL M, the relations abc and acb hold if and only if b =c . " This convenient 
notation was used with profit in [5]. We shall at tempt to preserve as many of the 
other notations introduced in [5] as possible. 
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discussion. In this paper we shall need the fact that this relation of 
lattice betweenness satisfies (a), (/3), (h), and 

(1.2) abc->ar\c -£b -£ a\J c. 

Further properties of this relation are given in [5, Part II ]. 
With reference to each point pÇzM of a metric space (M, 8) we 

may define a partial ordering of M as follows [3]. 
If a, bÇzM> then a<pb in case pab and a^b. The transitivity of the 

relation <p follows from the transitivity /2 of metric betweenness. 
The antisymmetry of ^ v is apparent. We shall be interested in the 
following conditions [5, Part I ] . 

p 
(Ts) pbc'pdc-bxd —» pxc. 

(T7) pbc'pbdcxd—* pbx. 

REMARK 1. Condition (Tf) states that an upper bound for the set 
[b, d] is greater than every element between b and d, while condition 
(Tj) states that a lower bound for the set [c, d] is smaller than every 
element between c and d. 

We shall also need the following condition. 
(A p) If a,bÇ:M and if a and b are not comparable by the relation S P, 

then there are elements aKJb, aC\bÇ:Mfor which we have {aKJb)a{aC\b)} 

(a\Jb)b(p,r\b)9 a(a\Jb)b, a(aC\b)b, and p(ar\b)(a\Jb). 
We may now state the following theorem. 

THEOREM 1. Let (M, 6) be a metric space. IfOÇ-M, then (M, ô, <0) 
is a metric lattice with least element O if and only if (M, S) satisfies 
(A0) and (7?) or (A0) and (7?). 

PROOF. The necessity of the condition (A0) is obvious. But both 
(r£) and (JTJ) also hold in every lattice if p is a distributive element. 
We prove this in the following lemma which is a generalization of 
Theorem 9.4 of [5]. 

LEMMA 1. If L is a lattice and p is a distributive element of L, then 
the conditions (T%) and (T%) are true. 

PROOF. We prove ( r j ) first. Let pÇJL be a distributive element of a 
lattice L, and consider elements ô, c, dy # £ L satisfying pbcy pdc, and 
bxd. From (1.2) we obtain b^pKJc, d^pUc, and x^b^Jd. Hence 
x^p^Jc. Dually, x^pC\c. Since p is distributive, it follows that 
(pr\x)\J{xr\c)=xr\(p\Jc)=x} and dually. Thus (TJ) holds. To 
prove (T?), let p(£L be a distributive element and consider elements 
b, c, d, x(EL satisfying pbc, pbdt and cxd. As before, we have b'èpKJc, 
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b^pyJd, and x^cC\d. Consequently, since p is distributive, p\Jx 
^p\J(cC\d) = {p\Jc)C\{p\Jd)^b. Dually, pC\x^b. Another applica­
tion of the distributivity of p yields {pC\b)\J\bC\x) ^bC\{p\Jx) =b. 
By duality we obtain the relation pbx. Thus (T?) also holds and the 
proof of the lemma is complete. 

The necessity of the conditions (T$) and (T?) now follows from 
Lemma 1 and the fact that the least element of a lattice is a dis­
tributive element. 

We pass to the proof of the sufficiency of our conditions. Using 
only 04°) we see that a\Jb and aC\b are upper and lower bounds, re­
spectively, for the set [a, &]. This follows on applying the transitivi­
ties h and h to the relations (a\Jb)a{aC\b)1 {a\Jb){aC\b)0, and to the 
relations (a\Jb)b{aC\b), (a\Jb)(ar\b)0. The force of the conditions 
(Tg) and (T$) is that each ensures that a\Jb and aC\b are unique least 
upper and greatest lower bounds, respectively. We shall give the de­
tails of the proof only in the case in which (A0) and (Tg) are assumed. 
The other set of conditions may be handled by almost identical argu­
ments. Hence suppose that the conditions (^4°) and (Tg) are valid. 
We prove first that a\Jb is the least upper bound of the set [a, b] 
if a and b are not comparable. For, if z ^ a , b by definition we have 
Oaz and Obz. Condition (^4°) yields a(a\Jb)b, and condition (Tf) then 
gives 0{a\Jb)zy that is, z^a\Jb. The treatment of aC\b is less trivial. 
Consider an element wÇ^M for which w^a,b; that is, for which Owa 
and Owb. We show first that w>aC\b is impossible as follows. If it 
were true we should have 0{aC\b)w, and this with Owa and Owb would 
yield, via tu the relations (aC\b)wa and (aC\b)wb. Combining 
aw{aC\b) with a{a(~\b)b we would obtain, again by tu the relation 
w(aC\b)b. From this and the relation {aC\b)wb we would get 
{ar\b)w(ar\b). But this last relation implies that w — aC\b, which 
is contrary to our assumption. Thus the relation w>aC\b cannot 
hold. To show that w^aC\b we again use indirect proof. If this rela­
tion fails to hold, then, since w^aC\b, the elements w and aC\b would 
not be comparable. The condition (A0) then implies the existence of 
elements w^J(ar\b) and wr\(aC\b) satisfying with w and aC\b the 
relations listed in (-4°). The application of the condition (Tg) to the 
relations 0(ar^b)a, Owa, and {ar\b){{ar\b)\Jw)w gives the relation 
0((ar\b)KJw)a. Likewise we obtain 0{(aC\b)yJw)b. Applying the 
transitivity h to ((ar\b)\Jw)(anb)0 and a((aC\b)\Jw)0 yields 
a({aC\b)\Jw)(ar\b). Similarly, b{{ar\b)KJw){aC\b). Again, the rela­
tions b{{aC\b)yJw){aC\b) and b{aC\b)a would give, by tu the relation 
a{aC\b){{ar\b)KJw). A final application of the transitivity h to the 
relations a{aC\b)({ar\b)\Jw) and a({aC\b)\Jw){aC\b) would pro-

file:///bC/x
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duce the relation (ar^b)((aC\b)yJw)(ar\b). But this implies that 
aC\b = (aC\b)\Jw, contrary to our assumption that wèaC\b fails to 
hold. We conclude that wSaC\b and that aC\b is the unique greatest 
lower bound for the set [a, b]. We have now shown that the relation 
<o has the lattice property. It is an easy consequence of the condi­
tion (A0) that 8(0, a) is a sharply positive modular functional and 
that 

ô(a, b) = d(a U 6, 0) - 8(a Pi b, 0) , 

This completes the proof that (M, ô, <o) is a metric lattice. 
REMARK 2. To show that one of the conditions (71?) or (T°) is 

actually needed in Theorem 1, we exhibit a metric space (M, h) which 
satisfies the condition (A0) but for which the partial orderings <q fail 
to have the lattice property for every q€zM. 

Let M consist of the six points O, a, b, c, d, I, with the distances 
of distinct points (we omit ô) as follows : Ia = Ib = 0c = 0d=ab = cd = 2, 
10 = 3, all other distances between distinct points equal to one. The 
condition (-4°) is valid for (M, ô) because only the pairs a, b and c, d 
are not comparable by the relation <o and for these pairs the choices 
cKJd = I, cC\d = a or b, aC\b = 0, and a\Jb = c or d are effective in the 
condition (A0), Thus <o is not a lattice ordering. By the symmetry 
of M it will suffice to show that <a is not a lattice ordering to prove 
our assertion completely. In (M, ô, <0) we have, besides the obvious 
fact that a is the least element, only the relations 0<b, c<b, d<bf 

c<I, and d<I. This is obviously not a lattice ordering of M. 

2. A characterization of modular lattices. We turn now to a con­
sideration of Problem II. The abstract systems which we shall con­
sider consist of a class K of elements a, b, c, - - - together with a 
triadic relation R defined on K and satisfying (a), (/3), (h), and (fe). 
We shall find conditions which are necessary and sufficient that such 
a system be a modular lattice whose lattice betweenness is identical 
with the relation R. 

For an arbitrary triadic relation R defined on a class K of elements 
a, b, c, • • • we make the following definition. 

(2.1) If a, bÇzK then a<pb in case (p, a, b) R and a^b. 
Using this notation, our solution of Problem II takes the following 
form. 

THEOREM 2.1. If a triadic relation R defined on a class K satisfies 
(a), (13), (h), and (fe), then (K, So) is a modular lattice with least ele­
ment 0 if and only if (K, R) satisfies (A0) and (T°) or (A0) and (T°). 
When either of these alternatives holds, the relation R is identical with 
the lattice betweenness of K. 
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PROOF. We note first that if (A0) and ( i f ) ((A0) and (7?)) hold for 
R, the proof of Theorem 1 assures us that (Ky ^ 0 ) is a lattice. Notice 
also that a^o& = ô  implies that (a, b, c)R holds by the definition of ^o 
and h. The truth of the second sentence of the theorem is then evident 
from the following theorem [5, Theorem 10.1]. 

THEOREM 2.2. If Lis a lattice and R is a triadic relation defined on L, 
then R is the relation of lattice betweenness of L if and only if the follow­
ing conditions hold, 

(i) The relation R satisfies (a), (0), and {t\). 
(ii) If a^b^cy then we have (a, b, c)R. 
(iii) If the relation abc holds, then in the sublattice generated by a, byc, 

the transitivity t2 holds for R. 

That the modular law holds in (K, ^ 0 ) is now implied by h [5, 
Theorem 9.1]. This completes the proof that (A0) and (T$) ((A0) 
and (T°)) are sufficient. Their necessity follows from Theorem 2.2 
and Lemma 1. The proof of Theorem 2.1 is now complete. 

3. A characterization of lattices. In this final section we shall pre­
sent our solution of Problem III . The abstract systems which we shall 
consider consist of a class K of elements a, bf c, - • • together with a 
triadic relation R defined on K and satisfying (a), (/3), and (h). We 
shall find sufficient conditions that such a system be a lattice under 
an ordering given by (2.1). In the presence of these conditions, we 
shall find necessary and sufficient conditions that the postulated rela­
tion R coincide with the lattice betweenness of K. The first of these 
results is given in the following theorem. 

THEOREM 3.1. If a triadic relation R defined on a class K satisfies 
(a), (/3), and (h), (A0) and (T%), then the relation Sois a partial order-
ing of K with the lattice property. 

PROOF. The antisymmetry of ^ 0 is a consequence of (/3), while the 
transitive law for ^ 0 niay be easily obtained if we notice that iden­
tifying d and O in (T°) yields the condition 

(t°2) (0, b, c)R(0, x, b)R -> (O, x, c)R. 

We may also note that identification of c and d in (T%) yields the 
condition 

(3.1) (O, ô, c)R • (6, x, c)R -> (0, x, c)R. 

This last condition may be used to replace h in the proof given in 
Theorem 1 of the sufficiency of the conditions (-4°) and {T®). A careful 
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examination of our proof will reveal that h was used only to show that 
the relations (0,a,aSJb)R and (0, b,aSJb)R follow from (Ofar\b,a\Jb)R, 
{ar\b, a, a\Jb)R and (aC\b, b, a\Jb)R. But it is easy to see that these con­
clusions follow from the same hypotheses under condition (3.1) as 
well as under fe. We can then follow the proof of Theorem 1 from this 
point until the conclusion that (K, ^ 0 ) is a lattice has been reached. 
The proof of Theorem 3.1 is complete. 

REMARK 3. That the sufficient conditions of Theorem 3.1 are not 
necessary conditions can be seen by the following example. Let the 
class K consist of the five points 0, a, b, c, 7, and let the relation R 
hold for the triples Oal, Obi, Ocl, Obc, and bel, as well as for those 
then required by (a) and (/3). I t is easy to verify that h holds in this 
example while (A0) fails. But R gives rise through ^o to the simplest 
non-modular lattice. 

REMARK 4. Theorem 3.1 leaves us in doubt as to the question of 
the identity of the triadic relation R and lattice betweenness in K. 
The following example shows that still further assumptions must be 
made if we are to obtain this conclusion. Let K consist of the elements 
of the lattice shown in Figure 1. Define R to be lattice betweenness 
except that the relation (a, b, c)R is rejected. That R satisfies the 
conditions (a) and (/3) is clear since they hold for lattice betweenness 
and their conclusions do not involve three distinct elements. To verify 
that h holds for R we must make sure that we cannot arrange its 
hypotheses so as to obtain (a, b, c)R in the conclusion. To obtain 
(a, h, c)R from t\ would require hypotheses of the form (d, b, c)R, 
(d, a, b)R or of the form (d, b, a)R, (d, c, b)R. But these sets cannot 
hold in our example, since if we have (d, a, b)R and (d, b, c)R, then 
d^a, and dC^b^a^d^Jb, by (1.2). I t follows that dSJb — u or 7, con-
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trary to dt^b^a. The other set of hypotheses may be treated simi­
larly by interchanging a and c. I t is also easy to check that R satisfies 
(^4°). I t remains only to remark that the conclusion of (Tg) cannot 
be (a, by c)R (since O must appear in the conclusion of (T$)) to assure 
ourselves that R satisfies all of the conditions of Theorem 4. Thus R 
generates through ^ 0 the lattice of Figure 1 but R is not the relation 
of lattice betweenness of this lattice. 

To overcome this difficulty we propose the following strengthened 
condition. 

(3.2) If (pC\x)U(xr\c) =xC\(p\Jc) and dually, then 

(p, b} c)R-(py dy c)R-(by Xy d)R -» (py xy c)R. 

The proof of Lemma 1 shows that (3.2) holds for lattice betweenness 
in arbitrary lattices. 

We conclude with the following theorem. 

THEOREM 3.2. If a triadic relation R defined on a class K satisfies 
(a)y OS), (h), (Tg), and (A°)f then R is the lattice betweenness of the 
lattice (Ky ^ 0 ) if and only if R satisfies (3.2). 

PROOF. The remark preceding the statement of the theorem dis­
poses of the necessity of (3.2). To establish the sufficiency we rely 
on the proof of Theorem 10.1 of [5] to assure us that the relation 
(a, by c)R implies abc (lattice betweenness). I t remains, then, to prove 
that the relation abc implies the relation (a, bf c)R. I t was proved in 
[5] that when abc holds the sublattice generated by a, 6, c is distribu­
tive. Hence the transitivity (T&) (see [5]) is available to us in this 
sublattice by virtue of (3.2). Now notice that since aUc^ob^oa^c 
(by (1.2)), we have a^bKJc^aVJc and dually. The condition (A0) 
then gives the relations (a, a^JbKJCy c)R and (a, aC\bC\Cy c)R. Clearly 
a^JbUc^ob^oaHibr^c; from which we obtain (aUbUcf by aC\br\c)R. 
The transitivity (T%) then yields (a, b, c)R as desired and the proof 
is complete. 
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