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ing the origin, the theorem from Polya-Szegö may be applied with 
the F(z) of the theorem taken as A (z). Theorem 111(b) then follows 
immediately. 

As an application of Theorem III, let us consider the poly­
nomial F(z)=jy~oakG(k+p)zk where p>0 and G(z)=T(z)~1 

= ^ n * = i ( l + n~'1z)e~zln
} the reciprocal of the gamma function. 

Since J> = 0 and all the zeros of G(z-\-p) are negative, any sector 
wi ̂  arg z ̂  C02 S 7T—coi containing all the zeros of A (z) will also contain 
all the zeros of F(z). For example, if A{z) = (2 — 2)(z+l — i), then 
F(z)=0.5z2-(l+i)z-2 + 2i, which has the zeros (3.058 + 0.514*) and 
( —1.058 +1.486i), both thus being in the sector O^arg 3^135° con­
taining the zeros of A(z). 
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1. Introduction. Let F be a two-dimensional Euclidean space, and 
let x be a vector ranging over V. The vector function f(x) is to be a 
vector in V defined over a set 5 of the space V. The Euclidean dis­
tance between any two points x and y in the plane is denoted by 
\x— y\. Furthermore ƒ (x) is to satisfy a Lipschitz condition, so that 
there exists a positive constant K such that 

(1) | / ( * i ) - ƒ ( * * ) ! ^ K\*i- **\ 

holds for all pairs xi and #2 in 5. 
In event ƒ (x) is a real-valued function of a variable x ranging over 

a set S of a metric space, then the extension of the definition of f(x) 
to any set T^)S so as to satisfy the condition (1) has been accom­
plished.1 The present paper establishes the result that the vector 
function f(x) can be extended to any set TZ)S so as to satisfy the 
Lipschitz condition with the same constant K. In §3 it is shown how 
the method used to obtain the above result can be applied to yield 
an extension for the case considered by McShane.2 If f(x) has its 

Presented to the Society, April 11, 1942; received by the editors May 11, 1942. 
1 E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. vol. 40 

(1934) pp. 837-842. 
2 Loc. cit. 
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functional values in a metric space then, in general, it cannot be ex­
tended so as to preserve (1). The geometric theorems which arise in 
forming the extension prove to be of as much interest as the extension 
itself. In the following section it is shown that this extension is a 
consequence of the following theorem about sets of circles in the 
plane. A circle with center Xi and radius ri is the two-dimensional set 
of points x for which |#—a^| Sr^ 

THEOREM 1. Consider in the plane two sets of circles M and Mr such 
that to each circle in M there corresponds a circle in M'. Let C{ £ M ' , 
having center xi and radius ri, correspond to CiÇzM, having center y% 
and radius r^ 

Suppose that 
ri = r{ 

for all corresponding circles C% and Ci. Furthermore suppose that 

(2) \xi -xj\ £ | y , - y , | 

for all corresponding pairs of circles (C*, Cj) and {Ci, Cj). Finally 
suppose that the intersection of all the circles in M is not empty, so that 
the product 

(3) IlCi^O. 
M 

Then it is true that the intersection of all the circles in M' is such that 

(4) I I C / ^ 0 . 
M' 

2. The extension. If the set S consists of a single point xi, the ex­
tension off{x) to a second point x2 is trivial. We will let S' be the set 
in the /-plane which corresponds to the set S in the #-plane. 

Suppose that the set S consists of two points X\ and #2, and that 
we wish to extend f{x) to a third point #3. With the points KXJ as 
centers (j = 1, 2) draw circles Cy with radii r3' = K\xj—Xz\, respectively. 
Define xj to be 

(5) xj s f(xj), j = 1, 2, 

With xj as centers draw circles Cj with radii rj —r$, respectively. 
Since by hypothesis \x[ — xi \ ^K\x\—X2\ , and since by construction 
the product Ci-C27^0, it is true that Cl Cl 5*0. To extend ƒ{x) to 
#3 so as to satisfy (1), choose x$ £CY CI. Since \xj —x$ \ ^rj =rj 
= K\XJ—Xz\, letting/(#3)==#3', the function f{x) has been extended 
from S={xi, x2) to T={xi, #2, x*) so as to satisfy the Lipschitz con­
dition (1). 
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The crucial extension, as we shall see, is from S=(x i , #2, #3) to 
T= (#1, #2, #3, #4). In order to construct this extension, the following 
lemma and theorem are essential. For convenience denote the tri­
angular set determined by three points yi, 3/2, yz by A{y\, y% yz)> 

LEMMA 1. If three circles CI (i = 1, 2, 3) with centers xi, respectively, 
are such that 

(6) Ci C! -A(x{, x{, xi) * 0, ij = 1, 2, 3, 

(7) C{-Ci'Ci-A(x{, xi, xi) = 0, 

then it is true that7, 

(8) B(C!)-B(Cn-Mx{> *i> xi) * 0, ij = 1, 2, 3, 

where B(CI) is the boundary of the circle CI. 

To prove Lemma 1 select three points #»y£C/ Cj A (i = l, 2; 
j = 2, 3; j>i) which exist by virtue of (6). Since A(x[2, xiz, #23) 
CA(^i , x{, x3')> in proving (8) it is sufficient to prove 

(9) JB(CÎ) .£(CÎ) • A(*î„ x'u, X2z) * 0. 

Denote the line segment joining points x and y by #;y. Since C{ is 
convex, #i2#i3 CCI . . Also (7) implies that the point #23 is not con­
tained in C{. Hence the circle C[ contains a maximum subsegment 
X12P2 of x[2x2Z and a maximum subsegment x[zPz of x'ytf&z, where the 
points P2T^PZT^#23- Since P2P3CG' , since x ^ ^ C i , and since B(C{) 
cannot intersect the B [A(P2, P3, #23) ] except at P2 and P3, a simple 
arc of B(C{) joins P2 and P3 and is contained in A(P2, P3, x2Z) and 
hence in A(x12, xïz, x2Z). 

In exactly the same way, there exist points QzE:x{zx2Z, Qi£#i2#i3> 
with QIT^QZ^X'IS, such that Qi and Qz are joined by a simple arc of 
B{Ci) contained in A{x[2l x[z, x2Z). Suppose the point P3 lay be­
tween #23 and Qz on xJz~x~Q. This supposition, together with the facts 
Cl Z)xTzQz, CiDÏx&Pz, implies that x2Zx'lzCC{ + Ci. But since 
*23#i3CC3', the previous statement implies that C{ CI • Ci A^O, 
contrary to assumption (7). Hence P3 is not between x2Z and Qz on 

3 Lemma 1 is stated for circles in order to shorten the proof of Theorem 2 ; how­
ever the lemma can be generalized as follows: Suppose that each of the sets G, Ci, C$, A 
and each of the products C% - A, d • Cj • A (i, j — 1, 2, 3) is a simply connected plane set 
having a simple closed curve as its boundary. Furthermore suppose C\- C%% Cs = 0, 
d • Ci -5(A) ^ 0 , where 5(A) is the boundary of A. Then it is true that B{d) -B(Cj) • A 
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#23*13» s o t n a t Ö3Gx28^i3—X13P3. This implies that the points P2 , Qz, 
P3 , Qx lie on the boundary of A(x{2, x[s, X23) in a clockwise order in the 
order just given. 

Since P2 and P3 are joined by a simple arc of B(C{) contained in 
A(x[2, x[Zi x2Z), and since Qi and Qz are joined by an arc of B(Cl) 
having the same properties, condition (9) holds with i = l, j = 2. 
Since we can choose any pair of the circles CI and repeat the above 
argument, condition (9) has been proved, and hence Lemma 1 is 
established. 

THEOREM 2. Suppose the two triangles A(3/1, 3>2, yz) and A(x{, xl, xl ) 
are such that 

(10) I x[ - %i I g I y t - y , - \ , i,j = 1, 2, 3. 

PÂew /<? any point y* in the plane there corresponds a point xl con­
tained in A(x{, xl, xl ) such that 

(11) I xl - xl\ S\yi- yi\, i= 1 ,2,3. 

To prove Theorem 2, with yi as centers draw circles d with radii 
r% = \y4—yi\, respectively. Similarly with xl as centers draw circles 
CI with radii rl =r», respectively. Since 3̂4 G C*, the products 
Ci-Cj'A(yi, y2, yz)9é0. Hence condition (10), together with the fact 
rl =riy implies condition (6). 

We first prove that condition (10) implies CI • CI • CI -A(x{, xl, xl ) 
5^0. Suppose this were not so. Let Pij be a point of intersection of 
B(Cl) and B(Cj). Since we suppose (7) holds, Lemma 1 implies that 
Pij can be chosen so that PijÇz.A(x{, x2 , #3') (i = l, 2 ; j = 2 , 3; j > f ) . 
Since we supposed C{ • C2 • C3' • A = 0, we have 

(12) \xl - P 1 2 | < | * 2 ' - P i , | . 

Denote the angle less than or equal to T, determined by three 
points ai, a2, a3, with vertex at a2, by Zaia2a3. Since by definition 
|*i — P12I = \x{ —Piz\ =fi , condition (12) implies by the law of 
cosines that 

(13) Z xlx(P 12 < Z xlxlPu. 

Condition (13), together with the fact PizÇzA(x{, xl, #3')> implies 
the first of the inequalities 

Z xl x{ Pu + Z xl x{ P13 < Z #2 #1 #3', 

(14) Z a/ s8' Pu + Z *2' #3' P23 < Z a;/ *s' xl, 

Z #8 #2 P23 + Z #/ #2' P12 < Z #3' #2' x{. 
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The last two inequalities are proved exactly as the first. 
The sum of all the angles in the three triangles A(x', Pij, xj) 

(i = l, 2; j = 2, 3; j>i) is ST. By adding the inequalities in (14), we 
see that in these three triangles A(#/, P*y, xj) the sum of those six 
angles, each of which has its vertex at one of the points xi, xi, #3' 
is less than w. Hence the sum of the remaining three angles in 
A(xi, Pij, xj) satisfies the condition 

(15) ]C ^ XiPijXj > 27T, i = 1, 2; y = 2, 3; y > i. 

Furthermore for the A(yi, y2l y3) of Theorem 2 we have 

(16) X z y t fW ^ 2 ^ * = h 2; ƒ = 2, 3 ; i > », 

the equality holding if y*ÇzA(yh y2} J3); otherwise the inequality 
holds. Consequently at least one of the three angles in (15) is greater 
than the corresponding angle in (16). Without loss of generality 
renumber the angles so that 

(17) Z x{P12xi > Z yiy*y2. 

By construction \x{ — P12I =|^»— yt\ (̂  = 1, 2). Condition (17) im­
plies by the law of cosines that in the triangles A(xi, P12, xi) and 
AOyi, yi, y2) 

(18) I xi - xi I > I y2 - y i \ . 

This contradicts assumption (10). Hence the assumption that (7) 
holds is false. Thus choosing a point xl G G ' • Ci • Ci A^O, we have 
\xl —xl I iS-rl = r*= Î *—3̂ 41 (̂  = 1, 2, 3) and Theorem 2 has been 
established. 

We now readily establish the following theorem. 

THEOREM 3. If the plane vector f(x) is defined on a plane set 
S= (xi, x2} xi) so as to satisfy the Lipschitz condition (1), then it can be 
extended to any plane set T = (xi, x2, x$, xl) so as to be Lipschitz pre­
serving. The extension f(xl) can be defined so as to be contained in the 
triangle formed by the points f (xi) (i = l, 2, 3). 

PROOF. In Theorem 2, let 

y{ = Kxu xi = f(xi), yi = Kx±, i = 1, 2, 3. 

Then the point xl in Theorem 2 is the desired extension ƒ (xl) =xl, 
since conditions (10) and (11) imply that 

I ƒ(*y) — ƒ(#*)\ s K\ XJ — xk\, j , k = 1, • • • , 4. 
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In order to extend f(x) from an arbitrary set 5 to any set TZ)S 
we first prove Theorem 1. This can be accomplished by means of 
Theorem 2 and by a theorem of Helly4 as follows. Choose an arbitrary 
but fixed set of three circles C» (i = l, 2, 3) in the set of circles M of 
Theorem 1. Since in Theorem 1 the hypotheses include the fact that 
YLMCÎT^ 0f choose the arbitrary point y A in Theorem 2 so that 
^Gl l i - iC** Then Theorem 2 implies that there exists a point xl such 
that \xl —x' | g \y±—y%\. Since^GÜJ-iCt-, i t is true that 13̂ 4—y*| Sri, 
whence \xl —xl \ Sri. Since r[ = ri in Theorem 1, the above inequal­
ities imply that each set of three circles in Mf has a point common to 
all three circles. Now by Helly1 s theorem, with n = 2, it is true that all 
the circles in M' have a point in common. Thus Theorem 1 is estab­
lished. 

Now we are in a position to prove the following theorem. 

THEOREM 4. Suppose the plane vector function f(x) is defined and 
satisfies the Lipschitz condition (1) on a set S of the plane. 

Then if T is any set containing S, it is true that f(x) can be extended 
to T so as to preserve the Lipschitz condition (1). The extension off(x) 
can be defined so that the set of points (f(x), for xÇï.T) is contained in 
any prescribed closed convex set containing S', where Sf = (f(x), for 
xES). 

PROOF. First, we prove that if U is any set on which f{x) satisfies 
the Lipschitz condition (1), and if Xo is an arbitrary point exterior 
to U, then f(x) can be extended from U to U+xo so as to satisfy (1). 
To do this let Xi be an arbitrary point in U, and let 

be the corresponding point in U'=[f(x), # £ £ / ] . With yi — Kxi as 
center and with radius r»s=2u XQ X% draw a circle d. As Xi ranges 
over U, denote the set of circles thus defined by M. Similarly with 
xl as center and with radius r/ =r{ draw a circle Cl, and denote the 
set of all circles, as xl ranges over U', by M'. Since condition (1) 
holds on Z7, condition (2) in Theorem 1 holds on U. Furthermore 
since by construction ri — K\x0—Xi\ we haveHijfC*5^0. Hence Theo­
rem 1 implies thatJ^M'Cl 5^0. Consequently there exists a point xl, 
with xl £lX»f'C7, which implies that 

| xl — xl | ^ u s K | xo — Xi\ 

4 E. Helly, Jber. Deutschen Math. Verein vol. 32 (1923) pp. 175-176. The theorem 
states: If each «-J-1 sets of a family of closed, bounded, convex sets of the n-dimensional 
Euclidean space intersect, then there is a point common to all the sets. 



106 F. A. VALENTINE [February 

for all corresponding pairs x% and xl in U and U', respectively. Hence 
letting f(xo) =XQ , we have extended ƒ (x) from U to U+x0 so that the 
Lipschitz condition (1) is preserved. For convenience denote the above 
extension from an arbitrary set Uto the set U+x0, where x0 is arbitrary, 
as extension E. 

The extension from a set 5 to a region T 1)5 of Theorem 4 can be 
accomplished as follows. Let R be the set of all the points in the plane 
which have rational coordinates. Extension E of the preceding para­
graph implies by ordinary induction that f(x) can be extended from 
the set S to the set S+R so as to satisfy the Lipschitz condition (1). 
Let x be any other point in the plane. In order to effect the extension 
to x let Xi be any sequence of points with rational coordinates such 
that lim,-»» Xi~x. If we define UzsS+^Xi, x0=x, then extension E 
of the preceding paragraph yields an extension ƒ (x) so that ƒ (x) satis­
fies (1) on U+x0. Condition (1) implies that limis=00 f(xi) =f(x). The 
function ƒ(x) is defined uniquely at x, for let yi be any other sequence 
of rational points such that limi==sû0 yi—x. Letting U^S+^yu and 
#0==x, extension E yields an extension ƒ *(x) such that f (x) satisfies (1) 
on U-\-xo. Since 

I f (yd - /O*) I ^ K | y{ - Xi I, 

and since limîra00 ƒ(#»•) =ƒ(#), it follows that 

(19) lim f(yt) = lim ƒ(*,) = ƒ*(*) - ƒ(*). 
Î = oo i = oo 

The f unction ƒ (#) thus defined satisfies the Lipschitz condition (1) 
on the whole plane. To prove this statement, let x and y be any two 
points in the plane, and let Xi and yi be two sequences of rational 
points such that lim^oo xi—x, limt==00 yi = y. Then the inequalities 

| ƒ(*) - f(y) | ^ | ƒ(*) - ƒ(*,) | + | ƒ(*,) - f(yi) | + | f (yd - /(y) | 
g i£ | x — *i | + K | a* - y{ | + Z | yt — y | 

imply, by passage to the limit, that 

Iƒ(*)-ƒ(?)I £ * | * - : v | . 
Thus the first part of Theorem 4 is proved since if we can extend ƒ (x) 
to the whole plane we can surely extend it to I ' D 5 . 

To prove the last sentence of Theorem 4, let L be any closed convex 
set such that 1 / 3 5 ' . Consider the sets of circles M and M' defined in 
the first paragraph following Theorem 4, however with U = S and 
U' = S'. Consider any two circles C{ and CI in M'. Since the straight 
line joining the centers of these circles is in L, and since (1) implies 
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that C{ - Ci ?*0, we have C{ • Ci L^O. Furthermore Theorem 1 im­
plies that H M ' C » ' ^ . Hence the theorem of Helly5 implies that the 
product ^ 

M' 

Hence in extension E one can choose x£ (EL, whence Sr-\-xi C.L. Now 
by ordinary induction the function f{x) can be extended to the set 
S+R (where R is the set of points with rational coordinates), so that 
the set S'+R'zs [f(x), x ranges over S + . R ] C £ . Now the extension of 
f(x) to the whole plane so that f(x)QLy x arbitrary, can be con­
structed. For consider the point x in equation (19), where XiC.R> 
Since by (19) lim»««, ƒ(#*) =ƒ(#), since ƒ(#»•) Çî:L, and since L is closed, 
it follows that f(x) £ L . Thus the proof of Theorem 4 has been com­
pleted. 

3. Generalizations. The functions studied by McShane6 can be 
easily extended by the method of the preceding section. Let the one-
dimensional real-valued function f(x) be defined over a set S of a 
metric space. Furthermore suppose there exists a real-valued function 
w(t)^0 defined for 0 ^ / , and satisfying the conditions 

(20) w{a) + w(b) ^ w(a + b)f 

(21) w(b) ^ w(a), fore ^ a. 

If the function f(x) satisfies the condition 

(22) | ƒ (*! ) -ƒ (**) | ^ w(||*i,*«||) 

for all pairs (xi, x%) in Sy then f (x) can be extended to the entire space so 
as to preserve condition (22). 

I t should be noted that condition (20) does not imply that w(t) be 
concave downward; however, any function w( / ) ^0 , t^0t which is 
concave downward must satisfy condition (20). The function w(t) is 
less restricted than that used by McShane.7 

To prove the above theorem, let S=(xi, #2) and suppose x$ is a 
third point to which we wish to extend ƒ(x). With ƒ(#*) (f = 1, 2) as 
centers draw circles C/ with radii rl ^w(^xu #3||), respectively. These 
circles are linear intervals. Suppose G' • a = 0. Then by (20) and (21) 
we would have 

I / O l ) ~ /(**) I > W(||*l> *s||) + W(||*2, Xt\\) 

^ W(\\xu XS\\ + 11*8, ^ | | ) ^ W(\\xif X2\\), 
6 Loc. 
6 Loc. 
7 Ibid 

cit. 
cit. 
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which contradicts the hypothesis |f(xi) — f{x%)\ Sw(\\x\, #2||). Thus 
C{ - CI T^O, and any point x{ £CY • C{ serves as an extension /(#3). 
In order to extend ƒ(x) from an arbitrary set U on which (22) holds, 
to a set U+xo, with f(xi) as centers, #»££/, draw circles CI with 
radii r[ 2=w(||xi-, #o||), respectively. Since each pair of the circles CI 
intersect, Hetty's* theorem, with n = 1, implies that Ü C 7 ^ 0 . This im­
plies that f(x) can be extended from U to Z7+#o so as to preserve 
condition (22). The extension of f(x) from 5 to the whole space now 
follows by transfinite induction. 

An advantage of the above procedure arises from the fact that if 
the extension were impossible, the method would reveal it. Counter­
examples exist which show that if f{x) has its values in a metric 
space, then, in general, f(x) cannot be extended so as to preserve 
conditions (1) and (22). For example, let x range over a two-dimen­
sional metric space in which all the "unit spheres" are congruent 
squares having corresponding sides parallel. Let ƒ(x) have its values 
in the two-dimensional Euclidean space. In Theorem 1, let-C* 
(i = 1, 2, 3) consist of three unit squares such that CvCi- C&=p con­
sists of one and only one vertex from each square. Also choose Cj so 
that rl =r,- = l, x{ = ( 1 , 0), xi = ( - 1 , 0), x{ =(0 , 1 + e), €>0. The 
constant e can be chosen so that condition (2) holds. Although con­
dition (3) holds, conclusion (4) fails. Hence one cannot extend f(x) 
from 5 = (xi, x%, #3) to T= (xi, #2, x3, P) so as to preserve condition (1). 

The first generalization of the material in §§1 and 2 would be to 
the ^-dimensional case, and thence to a Hubert space. In the w-dimen-
sional case the crux of this generalization lies in the generalization of 
Theorem 1, since that of Helly applies to the w-dimensional case. In 
the case of a Hubert space one would also need a generalization 
of the theorem of Helly. These matters are still open questions. The 
author wishes to express his appreciation to Professor Max Zorn and 
to Dr. W. T. Puckett with whom he has had stimulating conversa­
tion concerning these topics. 
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