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1. Introduction. An elementary treatment of the convergence of 
series of orthogonal polynomials is greatly facilitated if the poly­
nomials of the orthonormal set are known to be uniformly bounded on 
the domain of orthogonality, or on a part of it where convergence is 
to be proved.1 A demonstration due to J. Korous2 shows in a few lines 
that the orthonormal polynomials corresponding to a weight function 
pa on a finite interval are thus bounded, if the polynomials for weight 
p have the desired property, and if the factor a satisfies a Lipschitz 
condition and has a positive lower bound on the entire domain of 
orthogonality. The purpose of this note is to show that the argument 
of Korous can be extended so as to apply under fairly general condi­
tions to orthogonal polynomials in two real variables on an algebraic 
curve3 and in particular to orthogonal trigonometric sums,4 which can 
be regarded as orthogonal polynomials on a circle.5 A problem of the 
same category has been discussed by Peebles6 with less simple 
hypotheses on the factor a. 

In the case of trigonometric sums it is known in advance that the 
orthonormal functions for weight p = l, namely (27r)~1/2, 7r~1/2 cos kx, 
7r~1/2 sin kx, k — \, 2, • • • , are uniformly bounded, and a theory of 
the convergence of developments in series of orthogonal trigono­
metric sums is opened up immediately. For other algebraic curves the 
question of the existence of a weight function which gives rise to a 
bounded system of orthonormal polynomials is one requiring sepa­
rate investigation, and the answer to this question is known at pres­
ent only in particular instances.7 When the existence of a single such 
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1 See, for example, D. Jackson, Series of orthogonal polynomials, Annals of Mathe­
matics, (2), vol. 34 (1933), pp. 527-545; pp. 531-538. 

2 See G. Szegö, Orthogonal Polynomials, American Mathematical Society Collo­
quium Publications, vol. 23, 1939, p. 157; D. Jackson, Fourier Series and Orthogonal 
Polynomials, Carus Mathematical Monographs, no. 6, 1941, pp. 205-208. 

3 See D. Jackson, Orthogonal polynomials on a plane curve, Duke Mathematical 
Journal, vol. 3 (1937), pp. 228-236. This paper will be cited by the letter A. 

4 See, for example, D. Jackson, Orthogonal trigonometric sums, Annals of Mathe­
matics, (2), vol. 34 (1933), pp. 799-814. This paper will be cited as B. 

0 [A, p. 234.] 
6 G. H. Peebles, this Bulletin, abstract 45-5-219. 
7 See, for example, D. Jackson, this Bulletin, abstract 45-5-192; Fulton Koehler, 
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p has been established for a specified domain of integration of the 
type to be discussed below, the conclusions of the present note lead 
to a wide generalization of the convergence theory for series of 
orthogonal polynomials associated with the curve in question. 

2. Statement of the problem. Let C be an algebraic curve or a por­
tion of an algebraic curve, degenerate or nondegenerate, consisting 
of a single connected piece of finite extent or a finite number of such 
pieces. Let C be of the mth degree, in the sense that there is a poly­
nomial IL(x, y) of the rath degree in x and y, but no polynomial of 
lower degree, which vanishes identically on C, while each irreducible 
factor of II vanishes on a portion of C of positive length. The expres­
sion "connected pieces" will be understood to mean "pieces each of 
which is connected/' not "pieces connected with each other." A single 
"piece," on the other hand, may be made up of parts corresponding 
to different irreducible factors of II; it may be, for example, the 
perimeter of a square, or a set of line segments radiating from a com­
mon point. Let p(x, y) be a non-negative weight function which is 
integrable over C with respect to arc length, and for each irreducible 
factor of II is positive on a set of positive measure on the correspond­
ing part of C. 

Under these circumstances8 there is a set of polynomials in x and y 
orthonormal on C with arc length as variable of integration and p 
as weight function, which includes just m polynomials of the nth de­
gree for each value of n^m, and n-\-l polynomials of the nth. degree 
for n<m. Let pni(x, y), n = 0, 1,2, • • • ; i — 1, 2, • • • , ra, be such an 
orthonormal set, with the supplementary convention that when 
n + 1 <ra, pni^O for i>n + l, and also, on occasion, that £_i,i = 0 for 
l^i^m. The value of fcPpltds then is in every case either 1 or 0. 

Let <r(x, y) be a function defined and having a positive lower bound h 
on C, and satisfying the condition that if P\ and P^ are any two points 
on a connected portion of C, with coordinates (xi, y\) and (#2, ̂ 2), 

I <r(x2, y*) — cr(xh yi) \ ^ XAs, 

where X is constant (for simplicity of notation, a single constant f or the 
whole of C), and As is the distance from Pi to P 2 along C, or the shortest 
such distance, if Pi and Pi are connected by C in more than one way. 

Systems of orthogonal polynomials on certain algebraic curves, this Bulletin, vol. 46 
(1940), pp. 345-351. 

8 See [A, pp. 232-234]. The present hypotheses are somewhat more general than 
those which were explicitly formulated in the earlier paper, but no essential change is 
required in the reasoning which leads to recognition of the form of the orthonormal 
system. 
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Let qni(x, y), n = 0, 1, 2, • • • ; i = l, 2, • • • , n-\-l for n<m, i = l, 2, 
• • • , m for n^tn> be a set of orthonormal polynomials on C with 

pa as weight function; there is no occasion to introduce identically 
vanishing q's. 

The question at issue is that of inferring boundedness of the poly­
nomials qni from that of the polynomials pn{. It will be found that such 
an inference is possible, under conditions to be specified. 

3. Proof of the theorem for an arbitrary algebraic curve. Let 

n m 

Kn{x, y, u} v) = 22 22 Pki(x, y)pki(u, v). 

Then any one of the polynomials qnj(x, y), as a polynomial of the nth 
degree, has on C the representation 

tfrwU, y) = I p(w, v)Kn(x> y, u, v)qni(ut v)ds 
J c 

m /% 

(1) = 22 Pm(x, y) I p(«, v)pm(u, v)qnj{u1 v)ds 
;=i J c 

+ I p(u, v)Kn-i(x, y, u, v)qni(u, v)ds; 
J c 

the integration is extended over the curve C in the (u, z;)-plane. By 
application of Schwarz's inequality when pni^0, 

(2) 

I ppniqnjds ^ I ppnids I pqnjds = I pgn/ds 
L J c J •/c ^ c ^ c 

1 f 2 1 
:< — I paqnjds = —> 

the p's being normalized for weight p and the q's for weight pa. It 
remains to examine in some detail the integral involving Kn^i. Let 
this integral be denoted by I(x, y) or I. 

The sum Kn^\{x, y, u, v) has alternative representations of the 
form9 

1 mm 

(3) Kn_i = 22 22 cu[pni(uf v)pn-.iti(x, y) — pn-i,i(M> v)pni(x, y)]t 

1 m m 

(4) iTw_i = 22 22 dii[pm(u, v)pn-lti(x, y) - pn-i,i(u> v)pni(x, y)], 

[A, pp. 235-236.] 
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as special cases of a more general expression having an arbitrary 
linear combination of u— x and v — y in the denominator. If G is a 
number such that | x | ^ G, \y\ ^ G on C, then 

\cu\ SG, \du\ g G 

for all values of the subscripts. For 

pupnipn-i,idsy 
Jc c 

and by another application of Schwarz's inequality 

2 Ç 2 2 Ç 2 2 Ç 2 2 
£tJ ^ I P ^ ^ n t ^ I Ppn-l,lds S G I p^ntds = G J 

J (7 «J C J C 

a similar calculation applies to du. 
Since X"n_i(x, y, u, v) is for fixed (x, y) a polynomial in (u, v) of 

degree lower than the ^th, it follows from the property of ortho­
gonality of qnj that 

L p(u, v)a(u, v)Kn-i(xy y, u> i})qnj{uy v)ds = 0. 

Consequently cr(x, y)I can be represented in the form 

(5) a(x, y)I = I pO, V) [a(x, y) — <r(>, v)]Kn-i(xy y, u, v)qnj(u, v)ds. 
J c 

Let C\ be a portion of C forming a closed point set, consisting of a 
finite number of connected pieces, and containing no singular point, 
that is, neither a singular point of any nondegenerate component of 
C nor any point common to two such components. Then each con­
nected part of C\ is a straight line segment, a smooth arc, or a smooth 
closed loop. 

The essential ideas of the argument are illustrated with a simpler 
initial formulation, and in a form adequate for some of the most in­
teresting applications, if it is assumed that C itself has the character­
istics ascribed to Ci, and that C\ is the whole of C; the method is 
however of wider applicability as indicated. On the other hand, the 
reasoning could be made still more general, at the expense of some 
further attention to details, but the usefulness of the additional gen­
erality would not be so immediately apparent. The need for explicit 
consideration of certain wholly elementary items of detail arises from 
the fact that for fixed (x, y) either of the denominators u — x, v — y 
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in the expressions for Kn-i may vanish not only at the point u=x, 
v = y, but also at a number of other points of the curve. 

At any point of C\ the derivatives dy/dx and dx/dy have definite 
values, or else one of them has the value 0. Except on straight line 
segments, dy/dx can take on the values ± 1 at only a finite number of 
points. The locus C\ is made up of a finite number of arcs or segments, 
on any one of which |d/y/dx| is everywhere greater than or equal to 
1 or else everywhere less than or equal to 1. Any such arc C' (the 
word arc being regarded now and henceforth as applicable in particu­
lar to a line segment) is included in or coextensive with an arc C", 
also belonging to C, on which \dy/dx\ is everywhere greater than or 
equal to 1/2, if it is greater than or equal to 1 on C', or everywhere 
less than or equal to 2, if it is less than or equal to 1 on C', and such 
that each end of C', if not a terminal point of C, is an interior point 
of C". Let a definite arc C" be associated in this way with each C'. 
The distance from any point of an arc C' to any point of C not be­
longing to the corresponding arc C" has a positive lower bound S for 
the whole of the locus C\ which constitutes the aggregate of the arcs 
C'. It is to be noted further that |ds/d#| ^ 5 1 / 2 on an arc C" where 
\dy/dx\ ^ 2 , and | d V ^ | ^ 5 1 / 2 on the other type of arc C". 

Let P , with coordinates (x, y)> be an arbitrary point of G . Let C'p 
be the arc C' to which P belongs, or, if P is a common end point of 
two such arcs, let C'p be either of them. Let K be the corresponding 
arc C". Let the rest of C be subdivided into two parts K'', K", so 
that if P ' , with coordinates (u, v), is any point of K'', the line PP' 
makes an angle not greater than 7r/4 with the x-axis, and if P' is on 
K", PP' makes an angle less than 7r/4 with the 3>-axis. With the value 
of ô defined in the preceding paragraph, | u— x\ ^d/2112 for any point 
P r on JST', and \v-y\ ^S/2 1 ' 2 if P ' is on K". 

Let it be supposed for definiteness that Cp is an arc of slope numeri­
cally less than or equal to 1 ; the alternative case would be treated 
in the same way, with the obvious interchanges of variables. For 
integration in (5), the point (x, y) being regarded as fixed, let 
Kn_i(x, y, u, v) be represented by (3) when (u, v) is on K or K\ and 
by (4) when (u, v) is on K"'. 

On K, since A^^5 1 / 2 |Ax| , 

I o"(ff> y) — <r(u, v) | ^ 51/2X | u — x\. 

Let IJL be an upper bound for a on the whole of C. Then on K\ 

\[<r(xyy)-a(u1v)]/(u-x)\ g 2 » V « , 

and there is a similar inequality on K" with u— x replaced by v—y. 
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By application of Schwarz's inequality, as in (2), 

J P O , V) I pap(ut v)qn,(u, v) | ds S h~112, 
c 

and the same upper bound is valid if the integration is extended only 
over K, K', or K". 

Let it be supposed that \pap(x, y)\ ^H on a point set C2 contained 
in Ci, uniformly f or all values of the subscripts a and /3. (In particular, 
Ci may be the whole of C\.) Then, by combination of the inequalities 
that have been obtained, 

<r(x, y) | I(x, y) | g (5^2X + 2™ix/b)2tn*GhrliW 

if (x, y) is on C2. (It is readily seen that the coefficient 25/2 = 2 • 23/2 could 
be replaced by 23/2, but the difference is immaterial for the purpose in 
hand.) The absolute value of the sum in the third member of (1) does 
not exceed mh~1/2H. Consequently, for (x, y) on C2, 

| qni(x, y) | S H[mk-v* + ( ^ X + 25/Vô)2m2G/r-3 '2]. 

Since the right-hand member is independent of x, y, j , and n, it fol­
lows that if the p's are uniformly bounded on C2, the same is true of the 
q's. 

4. Orthogonal trigonometric sums. In a particular case the results 
can be interpreted as relating to orthogonal trigonometric sums, the 
unit circle or a finite set of arcs on the unit circle being taken for C 
and Ci. With x = cos 0, 3> = sin 0, the polynomials pni(x, y), qni(x, y) 
are trigonometric sums in 0. The weight function p(x, y) and the 
factor a(x, y) will be represented alternatively by p(0) and cr(0). As 
far as the definition of the orthonormal system is concerned, the case 
of a domain of orthogonality consisting of detached intervals in a 
period is of course equivalent to that of a domain consisting of the 
entire period, with a weight function which vanishes identically out­
side the intervals in question. The conclusion can be stated as follows: 

Let uo(0), Ui(d)j #i(0), • • • constitute a set of orthonormal trigo­
nometric sums with respect to a weight function p(0) on a domain D\ 
consisting of a period interval, regarded as closed, or of a finite number 
of closed intervals contained in a period] let a(0) have a positive lower 
bound on Dlf and satisfy a condition of the form 

| <r(02) - <r(0i) | ^ X | 02 - 0! | 

on each interval of D±t taking on the same value at both ends of the period 
interval if these end points belong to Di; and let J7o(0), Ui(d), Vi(0), • • • 
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be the orthonormal trigonometric sums on Di for weight p(6)cr(0) ; if the 
u's and v's are uniformly bounded on a point set D2 contained in Di, the 
same is true of the U's and Vs. 

For this case the proof admits a materially simpler formulation 
than when geometric configurations are contemplated having the de­
gree of generality previously considered. The details relating to the 
loci C', C", K, K', K.", can be dispensed with for the most part ; with 
0 replacing the pair of coordinates (x, y), and $ replacing the pair 
(u, v), it is sufficient, for any particular value of 0, to consider sepa­
rately the intervals (0-T/2, 0+T/2) and ( 0 + T T / 2 , 0 + 3 T T / 2 ) , and in 
the integral corresponding to the right-hand member of (5) to repre­
sent Xn_i(0, </>) in the former interval by an expression with de­
nominator sin (0—</>), and in the latter interval by an alternative 
expression with 1—cos (0— </>) in the denominator.10 

T H E UNIVERSITY OF MINNESOTA 
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APPROXIMATION OF CONTINUOUS FUNCTIONS BY 
MEANS OF LACUNARY POLYNOMIALS 

BERNARD DIMSDALE 

1. Introduction. All rational integral polynomials are linear com­
binations of members of the complete set of powers whose exponents 
are the non-negative integers. If certain members of this set are de­
leted, the linear combinations formed from the resulting set are, in 
the strict sense of the term, "lacunary polynomials." In a large part 
of this paper, however, methods of reasoning designed for the treat­
ment of such polynomials are applicable to combinations from much 
more general sets of powers whose exponents are non-negative but not 
in general integral. The term "polynomial in x* of degree fin" will be 
applied to combinations from the set 1, #M1, #M2, • • • where jui, jU2, * • • 
form an arbitrarily preassigned set of real numbers such that 
0<fjLx<fjL2< • • • , and jUn is the largest exponent. 

This paper started out as an investigation of lacunary orthogonal 
polynomials, and although this aspect of it became subordinate to the 
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