
A NOTE ON REPRESENTATION BY POLYGONAL NUMBERS 

L. W. GRIFFITHS 

1. Introduction. The universal functions of polygonal numbers of 
order w + 2 were determined in an earlier paper.1 In each universal 
function the number n of variables was at most m + 2. The minimum 
value N of n, for each integer m ^ 3 , will be proved in this paper to 
be the integer N defined by (3). I t will also be proved that there is a 
unique universal function having n = N if and only if m = 3, 4, 
2N~2 — 2, 2N~2 — 1. A universal function having n = N is given by the 
integers (4). At least one universal function different from this func­
tion is given by the integers (6) if w?*3, 4, 2 * - 2 - 2 , 2 * - 2 - l , and if 
(7) and (8) hold. 

2. Proofs. In the notations of the paper to which reference has 
been made m was an arbitrary but fixed integer greater than or equal 
to 3. The coefficients ax, a% • • • , an in the universal functions were 
positive integers to be determined, and l ^ a i ^ • • • ^an. Also, by 
definition, wk=ai+ • • • +ak (l^k^n). I t was proved that no func­
tion is universal if wn<m + 2f and that if wn = m + 2 then the func­
tion ƒ is universal if and only if ƒ is one of the following : 

(1) (1, 1, 1, 1, 1) or (1, 1, 1, 2), with m = 3 and wn = m + 2, 

(2) (1, 1, 1, a4, • • • , O , wn = m + 2 > 5, ak S w*-i - 1 (4 ^ * g »), 

but w > 5 and #5 T^ 3 if #4 = 1. 

Thus iV = 4 if w = 3. I t will be proved that if m>3 then the minimum 
m is the integer iV uniquely defined by 

(3) 2*-3 - 1 < m ^ 2N~2 - 1. 

Consider the sequence of integers 1, 1, 1 ,2 ,2 2 , • • • , 2*~3, • • • in 
which the ith term is 2*~8 if i^3. The sum of the first i terms is 
2*~2 + l if i ^ 3 . Now let ƒ be a universal function which satisfies (2). 
Then it is easily proved by induction that auS2k~z and Wkû2k~2+1 
(3Sk^n). Hence if n<N this would imply in particular that 
tn+2=wnS2n-2+1^2N-*+l. This contradiction of (3) when n<N 
shows that n^N. Furthermore Net5 since m>3 in (3). 
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1 L. W. Griffiths, A generalization of the Fermât theorem on polygonal numbers, 
Annals of Mathematics, (2), vol. 31 (1930), pp. 1-12. 
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That N is the minimum value of n will be proved now, by exhibit­
ing a function satisfying (2) and having n = N. This function has as 
its coefficients the integers 

(4) 1, 1, 1, 2, 22, • • • , 2N~\ m+1- 2N~Z 

after they have been arranged in order of increasing magnitude. This 
can be done because by (3) with N^S there is a unique integer J such 
that O^J^N-3 and 2 J ^ m +1 -2N~Z<2J+K I t is easily verified that 
the rearranged integers (4) satisfy all the conditions in (2). 

The function defined by (4) is the only function satisfying (2) and 
having n = N if m = 4. This is also true if 

(5) m = 2N~2 - 1 or 2N~2 - 2. 

Then m + l—2N~z is 2N~Z or 2N~Z — 1 respectively, and the integers (4) 
require no rearrangement. Now if ƒ is a function which satisfies (2) 
with n = N and is different from this exhibited function, then there 
is a coefficient ad<V~z with j^N-1. Then wN-iS2N~Z and aN^2N~Z 

— 1, and hence m+2=WNS2N~2 — l. This contradicts (5). 
The function defined by (4) is not the only function satisfying (2) 

and having n = Nif ra^4, 2 i s r~2-2, 2 ^ - 2 - l . This will be proved by 
finding conditions on the integers b and c which are necessary and 
sufficient that the sequence 

(6) 1, 1, 1, 2, 22, • • • , 2N~\ 4, c 

yields, after rearrangement in order of increasing magnitude, the co­
efficients of a function satisfying (2). Then values of b and c will be 
exhibited such that these conditions are satisfied and that the set of 
integers (6) is not the set (4). 

Let b be any integer such that 

(7) (m+1- 2^~3)/2 ^b^ (m+1- 2*"4)/2, b ^ 2N~\ 

and let c be defined by 

(8) c = m + 1 - 2N~* - b. 

I t is easily seen that (8) is equivalent to the sum of the integers (6) 
being m + 2, and that the second inequality in (7) is equivalent to 
b^c. If in b^c the integer b is replaced by its value from (8), and if 
(3) is applied, it is seen that c^l+2N~5. Hence c is the last integer 
after rearrangement of (6). Now the first inequality in (7) is equiva­
lent, by (8), to the fact that c+1 is at most the sum of the preceding 
integers in (6). By the last inequality in (7) it is easily verified that 
the rearranged integers (6) satisfy the remaining conditions in (2). 
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Now, if m is odd, then (m + 1 — 2iV-3)/2 is an integer which may be 
taken as the value of b since it satisfies the conditions (7). I t is easily 
seen that the set (6), in which b = (m + l — 2N~z)/2 and c is deter­
mined by (8), is not the set (4). However, if m is even and not equal 
to 2N~Sy then b = (m + 2 — 2N~z)/2 and c determined by (8) are integers 
which satisfy (7) and yield a set (6) which is not the set (4). But if 
m = 2N~3, then N^6 and b = 2 satisfies the conditions (7) on b and 
yields a set (6) which is not the set (4). 

An interesting choice of integers b and c is that given by 
& = ( w + l - 2 ^ - 4 ) / 2 i f m i s o d d a n d l e s s than or equal to (2N-* + 2N-z-l), 
but by b = (m — 2N~*)/2 if m is even and less than or equal to 
(2N~4-\-2N~3). Then (6) require no rearrangement, and c is respec­
tively b or b+l. The resulting integers (6) differ from (4) when 
m7±2N-*+2N-*-l, 2N-*+2N~*. 

NORTHWESTERN UNIVERSITY 

HAUSDORFF METHODS OF SUMMATION WHICH INCLUDE 
ALL OF THE CESÀRO METHODS 

H. L. GARABEDIAN 

1. Introduction. The transformation1 

= V" c A* Cn ' ^n 

where cn = f0u
nd<fi(u) and \sn] is a given sequence, defines a regular 

method of summation of the sequence {sn} provided that <j>(u) is of 
bounded variation on the interval O^gw^l, continuous at u = 0, and 

[0 if u = 0, 

<j>(u) = j 1 if u = 1, 

U[<K« - 0) +<l>(u + 0)] if 0 ^ u < 1. 

If these conditions of regularity are fulfilled the sequence {cn} is said 
to be a regular moment sequence (briefly a regular sequence), the mass 
function </>(u) is said to be a regular mass function, and the method of 
summation involved is called a Hausdorff method of summation ( [l ] or 
[2]) and is designated by the symbol [H, </>(u)]. 
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1 To define the symbolism used here we write COT,n = w(w —1) • • • (m— n-\-l)/nl, 

C m ,o=l ; A^j — Xj — C»-,iX/+i+Ci,2^+2+ * • * • 


