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there is no projection on (m) to (C), it may be shown that at least 
either there is no projection on (w) to F, or else there is no projection 
on (m) to the complementary subspace of F in (C). (An illustration 
of the case where there is no projection on (m) to the complementary 
subspace in (C) is provided by the case of a finite dimensional 
YC(Q.) 

In a paper in preparation on the extension of linear transforma­
tions, the writer intends to discuss the questions indicated above, and 
related questions. 
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Statement of results. Sequences of Riemann-Stieltjes integrals2 

have as yet been little studied, only the following fundamental results 
being known. 

THEOREM A (Helly [2]). Let gn(x) (w = l, 2, • • • ) be an infinite se­
quence of real functions defined in the finite closed interval I=(a, b) 
which satisfy the following two conditions : 

(1) Total variation of gn in I = Vi(gn) S M, M a fixed constant, 

(2) g„-> g on I, n - > oo ; 

then for any function f (x) continuous in I , we havez 

(3) ffdgn^ffdg. 

THEOREM B (Shohat [3]). Let {gn} be a sequence of f unctions mono-
tonic and uniformly bounded in I and such that 

(4) gn—+ g on E, E a set dense on I and including the end points a, b of I, 

where g is a monotonie function (all the functions gn, g monotonie in the 
same sense) ; then we have (3) for any function f(x) for which 

1 Presented to the Society, January 1, 1941. 
2 A discussion of such integrals with references is to be found in [1]. (Numbers 

in brackets refer to the bibliography.) 
3 When the limits of integration are omitted, it is to be understood that they are 

the end points a, b of i". 
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(5) I fdgn existy n = 1, 2, • • • , 

(6) I fdg exists. 

Theorem A was rediscovered by Bray [4]4 and a condition weaker 
than (4), which is both necessary and sufficient, was found by Hilde­
brandt [5].5 

The present paper is devoted to a preliminary study of conditions 
governing convergence of the sequences in question when neither con­
tinuity of ƒ nor monotonicity of gn is assumed. The goal, not attained 
here, is to find necessary and sufficient conditions to be imposed on 
the sequence {gn}, where the functions gn belong to the class V of 
functions of bounded variation in J, in order to insure the validity 
of (3) for every bounded ƒ for which (5), or (5) and (6) hold true. Two 
necessary conditions can be given at once. Condition (1) is necessary 
since it is already necessary if we require that ƒ belong only to the 
class of functions continuous in 1" [5]. It is interesting to note, how­
ever, that condition (1) is not necessary if we require that ƒ belong 
only to Vy as is seen by the following theorem : 

THEOREM 1. If we have (2), then in order that we have (3) for every 
function f of Vfor which (5) and (6) are true, it is sufficient that the 
sequence {gn\ be uniformly bounded. 

The other necessary condition is obtained by taking for ƒ functions 
which are constant everywhere in I except for a single point. I t is 
easily found that the set C of points of convergence of gn to g must 
include all the common continuity points of gn, g as well as the end 
points a, b of I. Without going into the question of necessity6 we 
shall assume that C contains all the continuity points of g (whether 
they are also continuity points of all gn or not), that is, that 

gn->gonCy ginVy 
(7) 

C consisting of the continuity points of g and of a and b. 
4 In Bray's formulation of the theorem condition (2) is replaced by (4); but it is 

then necessary to specify that g is a function of bounded variation; and by the lemma 
given below, it is seen that the two formulations are completely equivalent. 

8 The following additional reference was brought to the author's attention by the 
referee: Hildebrandt, Stieltjes integration of the Riemann type, American Mathematical 
Monthly, vol. 45 (1938), pp. 265-278, Theorems 2.41; 5.41. 

6 It is to be noted that in Theorem B as well as in its generalization, Theorem 3, 
conditions (4) and (7) are equivalent, as can be readily proved. 
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The question arises whether condition (7) represents in the problem 
under consideration an essential weakening of condition (2). That this 
is not the case is shown by the following lemma. 

LEMMA. Under the conditions (1), (5), and (6), if (3) is implied by (2), 
it will also be implied by (7). If we are considering only a certain f satis­
fying our conditions, then C need consist of only those continuity points 
of g which are also discontinuity points of f {in addition to being dense 
on I and containing the points a and b). 

I t is thus no loss of generality to assume condition (2) rather than 
(7) in the following theorems. When this is the only condition im­
posed on the sequence {gn}, only the following result (besides that 
given in Theorem 1) has so far been obtained. 

THEOREM 2. If f has at most singularities of the first kind, then (1), 
(2), (5), and (6) imply (3). 

A direct generalization of Theorem B is given in the following theo­
rem. 

THEOREM 3. If in addition to (2) we assume that 

(8) Fj(gn)-»Fite), gn,ginV, 

then (5) and (6) imply (3). {Condition (1) is of course implied by (8).) 

The next theorem gives a result of wider scope. 

THEOREM 4. To insure the validity of (3) it is sufficient to assume in 
addition to (1), (2), and (5) that1 

(9) for every limit function v{x) of the sequence {Va{gn) \ Xfdv exists. 

In some applications the interval of integration is infinite and it is 
therefore of interest to consider that case. This is treated here only 
briefly, the following results being immediate.8 

THEOREM 5. For J = (a, b) = {a, <*>), if we assume (2), (5), and 

ƒ* c s» c /» c 

fdgn —> I fdg for every finite c > a; I fdg exists, 
a J a J a 

7 The existence of at least one limit function of the sequence given in (9) is insured 
by Helly's theorem of choice [2]. Note also that (6) is implied by (9), as can be 
seen, for example, by using the integrability condition on p. 542 [1] along with 
Theorem 2 in [7]. 

8 In order to simplify the formulas, we take only one of the limits as infinite. 
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then a necessary and sufficient condition for the validity of (6) and (3) 
is that we have either one of the following two conditions (e being an arbi­
trarily assigned positive number) : 

1 /% 00 

fdgn 
J C 

(lib) I (Cfd(gn-g) 

< e> c ^ Cet n <= N(e, c), 

< e, n ^ ne, c ^ C(e, n). 

NOTE 1. Condition (10) of the theorem can of course be replaced 
by the appropriate conditions in the preceding theorems which insure 
the validity of (10); thus if ƒ is continuous in 7, we can replace (10) 
by the requirement: 

(12) Vc
a{gn) S M(c). 

NOTE 2. I f / i s bounded in 7, then (11a) can be replaced by the rela­
tion V?(gn)<e, c^cei n^N(e, c). 

NOTE 3. If ƒ is bounded in I and g is of bounded variation for 
sufficiently large x, then we need assume only the validity of a relation 
like (4), and (11) can be replaced by the following corresponding rela­
tions : 

ƒ 
•J ai 

fdgn 

ƒ' fd(gn - g) 

< e> k ^ ket n ^ N(e, k), 

< e, n ^ ne, k ^ K(e, n), 

where {a&} is some sequence in E converging to oo. 
NOTE 4. If we have (12) and if 

lim B { \f(x)\ }-M(c) = 0, 

then we certainly have (11a). (The above relation will hold for in­
stance when lim^oo f(x) = 0 and M(c) is independent of c.) 

By the use of Theorem 5 we can give a direct proof of the existence 
of a solution of the moments-problem of Stieltjes-Hamburger.9 This 
proof as well as other applications of the above theorems will be given 
elsewhere. 

Proof of the lemma. The proof will be based on the following aux­
iliary lemma. 

9 The proof given in the literature is indirect, involving complex function theory. 
A discussion of this problem and references are to be found in [6]. 
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LEMMA. Let g and h be two functions of V which coincide in value on a 
set D1 and let f be a function bounded in L Then the existence of the 
integral of f with respect to one of these f unctions, say g, will imply its 
existence with respect to the other f unction h, and the equality of the values 
of the two integrals, provided D is dense in I and includes the end points 
of I as well as all those discontinuity points of f at which h has an ex­
ternal saltus. 

PROOF. That ffdg=ffdh when both integrals exist follows directly 
by the definition of Stieltjes integrals and the fact that D is dense in / 
and includes the end points of I. To prove that ffdh exists it is clearly 
sufficient to prove that ffdk exists, where k=g — h; and for that it is 
only necessary to show that the variation of k over the set of discon­
tinuities o f / i s zero [ l ] . This can be readily shown when we note that 
by our assumption k(x — 0) =k(x+0) = 0, and that therefore, if we de­
note the discontinuity points of k by Ui (i = 1, 2, • • • ), the total varia­
tion of k over the set obtained by excluding from I arbitrarily small 
intervals about the points m, • • • , um, can be made as small as we 
please provided m is taken sufficiently great; and that further by our 
assumptions, ƒ is continuous at each uit 

To prove the lemma, we note that by (1) the sequence {ffdgn} 
= {Jn} is bounded and it therefore contains at least one convergent 
subsequence. Let {jn>} be any such convergent subsequence and de­
note its limit by / ; let {gn"} be a convergent subsequence of the 
function-sequence {gn') (existing by Helly's theorem of choice [2]), 
and denote its limit function by g*. Now it can easily be proved that 
by the condition given in the lemma, no limit function of {gn\ can 
have an external saltus at a discontinuity point of ƒ. We can apply 
therefore the above auxiliary lemma and conclude that ffdg* exists 
and equals ffdg. Hence by our assumption, it follows that ffdgn>>—>ffdg> 
and consequently also J = ffdg. But {jn

f} was an arbitrary conver­
gent subsequence of {Jn } ; hence {Jn} has the unique limit / , that is, 
we have (3). 

Proof of Theorem 1. I t is clearly sufficient to consider ƒ monotonie. 
By the formula of integration by parts for Stieltjes integrals [l ], it is 
seen that the theorem will follow if we show that 

(*) fgndf-^fgdf. 

To this end, we employ Lebesgue^ theorem on the convergence of se­
quences of Lebesgue integrals with boundedly convergent integrands. 
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Putting A = / (a ) , B =ƒ(&), Gn(y) ^gn(f^(y))t G(y) ^gif'Ky)), we have 
[1]: 

jgndf = L ƒ Gn(y)dy, jgdf = L ƒ G(y)dy; 

and as by our assumptions, all the conditions of Lebesgue's theorem 
are satisfied, it follows that fGn(y)dy-*fG(y)dy, and that we have (*). 

Proof of Theorem 2. This theorem follows from the following three 
lemmas (Lemma 2 is more general than the present use of it requires). 

LEMMA 1. Theorem 2 is true if f is in V. 

PROOF. Let ƒ=ƒ<.—-ƒ<* be the decomposition o f / i n t o its continuous 
part fc and its discontinuous part fa [l ]. By Theorem A, Jfcdgn—>Jfcdg, 
and it remains to be shown that we also have the relation Jfddgn—*Jfddg, 
or the relation corresponding to (*) above. Now fgndfd=^,mdmgn(um)y 

where dm=f(um+0) —f(um — 0), and as the series ^2dmgn(um) converges 
uniformly with respect to n, being dominated by 

£{U»|}-EKI 

which is finite by our assumptions, it follows that 

lim \gndfd = Yjdmg(um) = Igdfd. 
n—>oo J m J 

LEMMA 2. If the sequence of bounded f unctions fm converges uniformly 
in I to the bounded function j \ and if we have (5), (6), and (3) with f 
replaced by fm (w = l, 2, • • • ) then we have (5), (6), and (3), provided 
we assume (1) and the finiteness of Vi(g). 

PROOF. We show first that the existence of ffmdg and the uniform 
convergence of fm to ƒ in / implies the relation 

(*) jfdg exists, Jfmdg -> Jfdg, 

g being assumed to belong to V. Let 

rk 

Smk = ^fm(Ui)[g(Xi) - g(Xi-i)] 
i = l 

be the &th Riemann sum of a sequence whose limit for k—> °o is Jfmdg, 
and let Sk represent the corresponding sum for ƒ. As 

| Sm*-** | ^ B {\U~f\ )'VI(g)> 
x in / 

file:///gndfd
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we see that smk approaches its limit Sk uniformly with respect to &, 
and that therefore linu-oo Sk and limmH-oo ffmdg exist and are equal. Re­
lation (*) now follows from the fact that the first limit is independent 
of the choice of the division points Xi and the betwëen-points Ui in 
the Riemann sums. 

Now by (1), 

ƒ/*. - jj fmdgn\è B \\f-fm\\-M, 
I x in / 

that is, ffmdgn converges to ffdgn uniformly with respect to n. Hence 

lim \fdgn = lim lim \fmdgn = lim lim I fmdgn 

n J n m J m n J 

= lim judg = jfdg, by (*). 

LEMMA 3. If f is a function having at most singularities of the first 
kind in 7, then there exists a sequence {fm} converging tof uniformly in 7, 
where each fm is in V and is continuous at the continuity points of ƒ. 

PROOF. We have to show that we can assign to every given positive 
and arbitrarily small number e, a function fei which is in V, is con­
tinuous at every continuity point of ƒ, and approximates ƒ within e. 
By assumption, ƒ(x — 0) and f(x+Q) exist, and we can therefore as­
sign to every x of the semi-open interval (a, &],10 a left-side interval 
(x'', x), and to every x of [a, ô), a right-side interval (x, x"), in each 
of which the oscillation of / i s less than e/4. By the Heine-Borel cover­
ing theorem, there exists a finite set of points Xi in I such that the sum 
of the corresponding intervals (#/, x{')=Ii (including the intervals 
[a, a") and (£', b]) covers / , and we may assume without loss of gen­
erality that the overlapping parts (x/+i, xi') of consecutive intervals 
/,• (necessarily non vacuous, as the Ii are open) lie inside (#», Xi+i). 
It can now be seen without difficulty that we can take as the required 
function fe, a function defined as follows: I t has the values ƒ(#»•)> 
f(xi — 0), a n d / ( x i + 0 ) , respectively for x = xu for x in 0*d, #»•)> a n d 
for x in (xiy xl+i) ; and it is linear in the remaining intervals. 

I t is apparent how Theorem 2 can be derived by the use of the 
above three lemmas. We need only observe that the functions fm of 
Lemma 3 (with ƒ of Theorem 2) satisfy the relations (5) and (6) 
(with f=fm) because they are in V, and have no common singularity 

10 The parenthesis will represent the open, and the bracket, the closed end of an 
interval. 

file:///fdgn
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points with the functions gn, g (by their definition, in view of (5) 
and (6)). I t is in fact known that two functions of bounded variation 
which have no common discontinuity points, are integrable with re­
spect to each other.11 

Proof of Theorem 3. Conditions (2) and (8) are equivalent [7] to 
(2) and the relation 

( 8 0 Vm
a(gn)-+Vaa(g), ft -* 00 ; X i n I. 

Hence, denoting by gn = pn — ÇLn, g — p — q the Jordan decompositions 
of the functions gn, g, we readily see that all the conditions of Theo­
rem B apply to the two sequences {pn}, {qn} (ffdpn, ffdqn exist be­
cause ffdgn exist [ l ] ) , and that therefore: ffdpn—>ffdp, ffdqn-+ffdq, 
and hence (3) is satisfied. 

The theorem can also be proved directly as follows:12 Let 

rk 

Snk = E / ( ^ a ) f c ( ^ a ) — gn(%i-l,k)] 
i=l 

represent the &th Riemann sum of a sequence of such sums which 
converges to ffdgn = Jn when k—» <*>, then : 

fk 

(*) | / „ - snk | g 2 Ose, f(x)Vt(g»), 
1 = 1 

the subscript i referring to the ith. subinterval (tft-i.fc, xitk). By (6), 
given a positive number h, there exists a number K = K(h) such that 
0&=23i Osdf(x)Vi(g) <h, k^K(h). Now let e be a preassigned posi­
tive number. Fixing first kf'^K(e/2)1 we can then choose, in view of 
(8'), a number N = N(e, k') so that for all n^N, we have 

I VX
a
i,k\gn) - vTk\g) | < —^— = e', U = Osez ƒ; i = 0, 1, • • • , rk, 

4rk>U 
Then 

rk' 

X OsCif(x)Vi(gn) < Ok' + 2e'rk>U < e/2 + e/2 = e, 
i = i 

k' ^ K(e/2) = ke; n ^ N(e, kf). 
11 We note, incidentally, that by Lemma 3 and the first part of the proof of Lemma 

2, it follows that a bounded function which has at most singularities of the first kind is 
integrable with respect to every function of V with which it has no common singularities. 

12 This proof, which is different from that given in [3] for Theorem B, was found 
by the author in the winter of 1939, when most of the results given in this paper were 
developed. 
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Combining this with (*), and remembering that e was arbitrarily as­
signed, we finally conclude that l ining / n = linifc limw snk = ffdg, that 
is, that we have (3). 

Proof of Theorem 4. Let us suppose first that the limit function 
v(x) occurring in (9) is unique. Then if gn — pn — qn represent the Jor­
dan decompositions of the functions gn, we find: 

2pn(x) -*v(x) + g(x) + g(a) s p*(x), 2qn->v(x) - g{x) + g(a) = q*(x). 

Since by (6) and (9), the integrals of ƒ with respect to p* and g* exist, 
we can now proceed exactly as in the first proof of Theorem 3. 

In the general case, let {jn
f} be an arbitrary convergent subse­

quence of {/n} = {ffdgn}. By Helly's theorem of choice, in view 
of (1) and (2), there exists a convergent subsequence {vn"(x)} of the 
sequence {vn>(x)} = { V%(gn')}, and it follows by the preceding discus­
sion that Jn"—*ffdg. By a familiar reasoning it then follows that we 
also have the relation Jn—>Jfdg, that is, (3). 
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