
ON A THEOREM BY J. L. WALSH CONCERNING THE 
MODULI OF ROOTS OF ALGEBRAIC EQUATIONS 

ALEXANDER OSTROWSKI 

In 1881 A. E. Pellet published1 the following very useful theorem: 

If the polynomial 

F(z) = | 0O| + | a i | z + | os| s2 + • • • + | <IA-I| s*"1 

- | a* | «* + | fl*+i I *k+l + • • • + \an \ zn, 

0 < k < n, a0an ?* 0, 

has two positive roots xi and x2 (xi <x2) , then the polynomial 

(2) ƒ(*) = a0 + aiz + a2z
2 + • • • + anz

n 

has no roots in the annulus Xi<\z\ <X2 and precisely k roots in the circle 

While Pellet's proof for his theorem utilizes the theorem of Rouché, 
J. L. Walsh published in 19242 another more direct proof and estab­
lished in the same memoir a sort of converse of Pellet's theorem. To 
formulate his result, consider the set g of all polynomials 

(3) ƒ0) = ÖO + aiz + a2z
2 + • • • + anz

n 

which correspond to given moduli of coefficients. All polynomials of § 
are obtained from one of them, ƒ(*), if the factors €o, €i, • • • , en in 
the expression 

(4) €0a0 + eiaiz + €2d2Z2 + • • • + enanz
n 

assume independently all values of modulus 1. Let 2ft be the set of 
roots of all polynomials in fÇ. It is immediately seen that if 9)? con­
tains a number a it also contains all numbers with the modulus \a\. 

I t was proved by Cauchy that all roots of (4) lie on or within the 
circle |z | =yi, where yi is the single positive root of the polynomial 

| ao | + | tfi ! z + • • • + | an-i | zn~l - | an | zn 

and that all roots of (4) lie on or are exterior to the circle | z | =3^2, 
where y2 is the single positive root of the polynomial 

1 A. E. Pellet : Sur un mode de séparation des racines des équations et la formule de 
Lagrange, Bulletin des Sciences Mathématiques, (2), vol. 5 (1881), pp. 393-395. 

2 J. L. Walsh: On Pellet's theorem concerning the roots of a polynomial, Annals of 
Mathematics, vol. 26 (1924), pp. 59-64. 
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| a01 — | 0i | z - • • • — I an j zn. 

Since the numbers y\ and y% obviously belong to 2ft, it follows that 2ft 
lies in the closed annulus y2^ \z\ Syi-

Suppose now that a>0 is not contained in 2ft. Then, if C is the 
circle |g| = a, all polynomials of g contain the same number k of 
roots within C. Indeed, if we vary continuously the factors e„ in the 
representation (4), the roots of (4) vary also continuously and their 
number within C remains the same since none of them is able to 
pass C. 

Now the theorem of Walsh runs as follows : 

Any positive a that is not contained in 2ft, and f or which the number 
of roots of (4) within the circle \z\ =a is precisely k (0<k<n), is con­
tained between the two positive roots of the polynomial (1), that is to say: 

| ak | a
k > ( | a01 + • • • + | a*_i | a*"1) 

+ (K + i | a* + 1 + ••• +|a»|a"). 

As the proof given by Walsh of this important result is not com­
plete,3 we give in what follows another proof proceeding on different 
lines. 

Suppose that, contrary to (5), 

n 

(6) | a*| ak ^ ] £ | av\ av\ 
v=Q,p?sk 

then, as a is not contained in 2ft, we have even 

n 

(7) | ak | a
h < £ | av \ a\ 

v=*Q,v?£k 

On the other hand it follows from our hypothesis that if e„ run inde­
pendently through all constants of modulus 1, 

n 

(8) X) war 7* 0, 

and therefore 
3 Walsh allows in his proof the roots of/(s), which are in absolute value less than a, 

to vary continuously and monotonically (in absolute value) and to approach 0. But 
during this variation the polynomial f(z) does not necessarily remain in the set 3 and 
the corresponding sets $?o for the polynomials thus obtained could very well contain a 
in the set of the roots, so that the expression (1) need not remain positive for 2 = a, 
as is assumed in Walsh's proof. 
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(9) \ak\ak5* ]C €"^öv 

I pssQtVj)£k 

But from (7) and (9) it follows that for all values of e„ in question 

(10) \ak\a
k< 

For, if we have for a particular set of e„-values, e°v: 

(ID ak\ a > E 0 v evava 
p*=0,V9ek 

we see from (7) and (11), that the right-hand side of (10) becomes 
equal to | ak\ a

k for some other set of e„, contrary to (9). 
Now it follows from (10) that the polynomials 

(12) 

have no roots at a and therefore no roots on the circle C. On the other 
hand, we have obviously by (10) everywhere on C: \f*(z)\ >\akz

k\. 
Hence, by the theorem of Rouché, since f*(z)—akz

k has exactly k 
roots inside C, the same is true for any polynomial ƒ*(z). 

The result arrived at may be announced in the following form: 
If €o, • • • , €&_!, 6fc.fi, • • - , € „ , run independently through all values 

of modulus 1, let 

fc~l n 

<K*0 = X evavz
v, f(z) = X evavz'; 

then the difference <j>(z) —\p(z) does not vanish on C and has exactly k 
roots inside C. 

It follows, that in particular 

k-l 

S €^ f l' 
j ^ O 

^ 
w 

22 e»^a 
v=fr+l 

But then it is impossible that we have simultaneously for one par­
ticular set e„' of e„ 

22 €x<W > 22 ^ f l * 

and for another, e„" , 

6fc.fi
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^ev
fava

v 
< X) e"ava

v 

Hence only two cases are possible : 

A. We have always 
fc-l 

z *vava
v 

K = 0 

> 
n 

X ) €"a"a 
y-Jfc+1 

and therefore everywhere on C: | </>(s) | > | yp{z) \. 

But then, by the theorem of Rouché, 4>{z) has inside C the same 
number of roots as <f>(z)—\l/(z), that is k, and this is impossible, <j>(z) 
being of degree k — 1. 

B. We have always 

X) evava
v < 2 3 €»avaV 

and therefore everywhere on C: \ 4>{z) \ < J \f/(z) | . 

But then x[/(z) would have inside C exactly k roots, while \p(z) vanishes 
at 2 = 0 with the multiplicity k + 1 a t least. 

We see that (7) and (6) are impossible and the proof of (5) is com­
pleted. 

The theorems of Pellet and Walsh dealt with in the preceding para­
graphs allow us to describe immediately the set 50Î. 

Consider the n + \ equations: 

(13) 

(14) 

(15) 

n 

X) | a„ | z' -
v=k+l 

v=0 

v=0 

n 

X) U , 12v -

a J zv = 0, 

zv = 0, k = 1, • • • , » — 1, 

flo = 0. 

If, as we will assume, a 0 a n ^ 0 , each of the equations (13), (15) pos­
sesses one positive root p resp. p0, and we have po^P since p is the 
exact upper and p0 the exact lower limit for the moduli of 9JÎ. As to 
the equations (14), every one of them possesses either two positive roots 
or exactly one double positive root or no positive roots at all. Strike 
out the equations (14) corresponding to the two last cases; each of 
the remaining equations (14) possesses two positive roots, Xk, x£ 
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(xk<Xk). Then we obtain 9ft by removing from the plane of z the 
two circular domains \z\ < p 0 and |z\ > p and all annuli Xu< \z\ <x{, 
corresponding to the equations (14) with two different positive roots. 

I t is then a consequence of Walsh's theorem that the different 
(open) intervals (x&, xl) have no points in common and lie in the 
interval (po, p); moreover, if for two of these intervals (#&, Xk), 
(xm, Xm) we have k<m, then we have certainly x{ tkxmi and it is 
easily seen that we have even x{ <xm. 

As Walsh remarks, his proof of Pellet's theorem remains valid also 
in the case of a power-series and of its roots inside the circle of con­
vergence. I t is hardly necessary to remark that our proof of Walsh's 
theorem also applies mutatis mutandis to a power series, if we only 
consider its roots within the circle of convergence. 

UNIVERSITY OF BASEL 

SOME EXCEPTIONAL VALUES OF THE LIMIT 
OF THE RATIO OF ARC TO CHORD 

RICHARD COHN 

It was observed by E. Kasner1 that in the complex euclidean plane 
the limiting value of the ratio of the arc of a curve to its chord, while 
one end point of the arc is fixed, and the other approaches it along the 
curve, is not always unity; but assumes for analytic curves tangent to 
a minimal line, a sequence of real values, .94 • • • , .86 • • • , .80, • • • . 
These values are functions of the order of contact only, and approach 
zero as the latter increases. In this note we shall describe two similar 
situations which occur in real spaces. 

The problem in the case of the K plane2 has been worked out in 
Professor Kasner's Seminar in Geometry.3 In this plane the length 
of the curve y =f(x) passing between points of abscissae xi, X2, in that 
order, is given by 

X1 \dx/ 
1 E. Kasner, The ratio of the arc to the chord of an analytic curve need not approach 

unity, this Bulletin, vol. 21 (1914), pp. 524-531. Similar questions for three dimen­
sions are discussed in E. Kasner, Complex geometry and relativity, theory of the "rac" 
curvature, Proceedings of the National Academy of Sciences, 1932, p. 267. 

2 Kasner, Trihornometry, a new chapter of conformai geometry, Proceedings of the 
National Academy of Sciences, vol. 23, p. 346. 

3 R. Coleman, S. Jablon and D. Mittleman obtained the results for the K plane 
given below. 


