
CONDITIONS FOR THE CONTINUITY OF ARC-
PRESERVING TRANSFORMATIONS1 

D. W. HALL AND W. T. PUCKETT, JR. 

1. Introduction. A single-valued transformation T(A) = B, where 
A and B are topological spaces, is said to be arc-preserving2 provided 
that the image of every simple arc in A is either a simple arc or a 
a single point in B. Even when A is a simple arc, an arc-preserving 
transformation may fail to be continuous ; for example : on the unit in­
terval (#o = 0 ^ # ^ l = # i ) let Xn — l/n (« = l, 2, 3, • • • ). Define 
T(XO)=XQ and for each interval An (xn+i^x^xn) let T(An)=A be 
a topological transformation such that T(xn) —x0 or X\ according as n 
is even or odd. Then the transformation T{A)=A is arc-preserving, 
but fails to be continuous at xo. 

The results of this paper concern conditions under which an arc-
preserving transformation is continuous, and the conclusions lead to 
homeomorphisms. We consider only the case where A is a locally con­
nected continuum. The transformation T may be made continuous by 
putting conditions on the space A or by putting added conditions on 
the transformation T itself. In this paper we take both points of view. 
We shall say that A is strongly arcwise connected provided every infi­
nite subset of A intersects some arc of A in infinitely many points. 
Our principal theorem states that if A is cyclic and T(A)=B is arc-
preserving then T will be topological or B will be an arc provided 
either A is strongly arcwise connected or T is tree-preserving3 ( that 
is, the image of every tree in A is a tree or a single point in B). More­
over, we show that if B is not an arc then A must be strongly arcwise 
connected in order that a topological mapping be the only arc-pre­
serving transformation of A onto B. 

Throughout the paper A is a locally connected continuum and T is 
a single-valued transformation, but not necessarily continuous. It is 
understood that a single point is to be regarded as an arc. 

1 Presented to the Society in parts as follows: April 6, 1940, under the title On 
arc-preserving transformations, by Puckett; April 26, 1940, under the title On arc and 
tree preserving transformations, by D. W. Hall; and September 12, 1940, under the 
title Arc-preserving transformations of a certain class of spaces, by Hall and Puckett. 

2 See G. T. Whyburn, Arc-preserving transformations, American Journal of Mathe­
matics, vol. 58 (1936), pp. 305-312. See also D. W. Hall and G. T. Whyburn, Arc- and 
tree-preserving transformations, Transactions of this Society, vol. 48 (1940), pp. 63-71. 

3 See R. G. Simond, Duke Mathematical Journal, vol. 4 (1938), pp. 575-589; also 
Hall and Whyburn, loc. cit. 
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2. On strongly arcwise connected sets. The set A is said to be 
strongly arcwise connected provided that every infinite subset of A con­
tains infinitely many points which lie on an arc in A. The following 
are immediate consequences of this definition : 

(2.1) A strongly arcwise connected set is compact and locally con­
nected. 

(2.2) In order that a continuum be strongly arcwise connected it must 
be the sum of a finite number of cyclic chains. 

(2.3) The property of a continuum's being strongly arcwise connected 
is cyclicly reducible.4 

(2.4) The property of being strongly arcwise connected is invariant un­
der an arc-preserving transformation. 

(2.5) If A is strongly arcwise connected and T(A) —B is a one-to-one 
arc-preserving transformation, then T is topological. 

PROOF. We need only show that T(A)=B is continuous. To this 
end let {xn} be a sequence of points converging to a point x in A. 
Since A is strongly arcwise connected we lose no generality in assum­
ing that all the points {xn} lie on an arc a in A. For each n let a n b e 
the irreducible subarc of a containing x-\-^X=nXi\ t henHce n =x. Now 
^T(IIaw)=Il2"(«w), since T is one-to-one. Thus T(x) =YlT(an) is the 
intersection of a monotone decreasing sequence of arcs. Thus T(xn) 
converges to T(x), since T(xn) is contained in T(an) for every n. 

The following example shows that condition of strong arcwise con­
nectivity cannot be omitted : 

EXAMPLE. There exists a one-to-one arc-preserving transformation 
T(A) — B, where A is a cyclicly connected continuum, which is not con­
tinuous. 

PROOF. The example will be constructed in the euclidean plane. 
Let L be the unit interval and for every positive integer n let A n be a 
line segment of length 1/n2 erected perpendicular to L a t the point 
1/n. Define an as the end of An not on the line L and let Bn be the 
segment joining the point an to the origin. Then the cyclicly con­
nected continuum of the example will consist of the unit interval L 
together with all the segments An and Bn. 

To construct B let 0 denote the origin and for every positive in­
teger n define Qn as the point (1/n, 0). Let M denote the line x = .7, 
and Pi = (l , 1). We may then define an infinite sequence of points 

4 See Kuratowski and Whyburn, Fundamenta Mathematicae, vol. 16 (1930), pp. 
305-331. 
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{Pn} as follows : assuming thai Pn-\ has been defined let Rn-i be the 
point of intersection of the bisector of the angle OPn-iQn-i with the 
line M, and define Pn as the midpoint of the segment Pw_ii?n_i. Let Cn 

be the segment OPn and Dn the segment PnQn> The set B is then de­
fined as the sum of L and all the line segments Cn and Dn. 

The transformation T(A) —B is now easily set up. Define T(x) =x 
for all x in L, and let T send the sum of An and Bn topologically into 
the sum of Cn and Dn. Evidently T(A) —B as thus defined is one-to-
one and arc-preserving, but not continuous at the origin. 

(2.6) Any locally connected continuum A which is not strongly arc-
wise connected may be mapped onto the unit circle by an arc-preserving 
transformation. 

PROOF. Since A is not strongly arcwise connected it contains a se­
quence of disjoint regions5 { Un) such that no arc in A intersects 
infinitely many of the Un. Clearly, the set M = A—^2Un and the 
points of 22 ^* give an upper semi-continuous decomposition of A. 
This decomposition determines a continuous transformation Ti(A) 
— A\ such that each Ti(Un) is a component of Ai — Ti(M)=Ax — pi 
and Ai — pi-\-^2Ti(Un). Now for each positive integer n let Ln be the 
line segment in the euclidean plane between the points XQ = (0, 0) and 
xn = (l/n, 1/n2) and define A2=^Ln. Then there exists a continuous 
transformation T2(A1)=A2 such that T2(T1(Un)) = T2(Ti(Un) +£ i ) 
— Ln. Finally, let B be the unit circle x = cos 6, 3/ = sin 6 (0^d<2ir) 
and let Bn be the subarc of B given by 0 S 0 ^ (In — l)w/n. A sequence 
of topological transformations Tz(Ln)=Bn which in every case maps 
Xo onto the point (1, 0) of J? defines a transformation T${A2) —B. Let a 
be any arc of A and consider its image T{a) = TzT2Ti{a) in B. Since 
T2T\{A) —A2 is continuous and a can intersect at most a finite num­
ber of the regions Un, it follows that T2Ti(a) is a connected subset 
of A2 and is contained in some y^f=1Lnv (ni+\>n%). Moreover, by 
construction Ts(^=iLni)=Bn]c is continuous and, consequently, 
TzT2Ti(a) is an arc. Thus T(A) = T{T2T\{A) —B is arc-preserving. 
However, it will be noted that T fails to be continuous at any point 
in the limit superior of { Un}, but is continuous on every arc a of A. 

3. Lemmas. In this section we obtain some preliminary results con­
cerning arc-preserving transformations defined on cyclic locally con­
nected continua. The set B is a topological space. 

(3.1) Let A be cyclic, let T(A) —B be arc-preserving, and let G= [a] 
5 See Hall and Puckett, Strongly arcwise connected spaces, to appear in American 

Journal of Mathematics. 
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be the set of all arcs with endpoints in T~l(pf) and T~~1(qf) respectively. 
If the image of every simple closed curve of A is an arc, then Y\T{ot) con­
tains an arc joining p' and q'. 

PROOF. Let G*= [a*] be the subcollection of arcs of G which have 
p*ÇzT~l(p') and ^ G T " 1 ^ ' ) for their endpoints, and let a? and a2* 
be any two arcs of this collection. Now let ft and ft' be subarcs of 
T(a*) and T(a*) respectively which have p' and q' as endpoints. 
Suppose there exists a point x' of ft' not contained in ft ; then ft +f t ' 
contains a simple closed curve / ' . Therefore, since T~l(xf) is disjoint 
with ce2*, a*+a^ contains a simple closed curve J such that T(J) con­
tains J', contrary to hypothesis. Define ft=ft =f t ' , and suppose 
there exists a point p^p* of T~l(p'). Since A is cyclic it contains an 
arc p*q*+q*p. Now T(p*q*) contains ft, since p*q* is an arc of G*. 
Moreover, T(q*p) must contain ft, for otherwise T(p*q*-\-q*p) would 
contain a simple closed curve. Because of the symmetry of the above 
argument it follows t h a t l J r ( a ) contains ft. 

(3.2) If T(A)=B is arc-preserving and J is a simple closed curve, 
then T(J) —Jf is topological or J' is an arc. 

PROOF. Suppose J' is not an arc. Then, since / is strongly arcwise 
connected, we need only show that T(J) —J' is one-to-one, by virtue 
of (2.5). If T{J) —J' is not one-to-one there exist two points x and y 
of / such that T(x) = T(y). Express ƒ = a + f t where a and /3 are arcs 
such that a-j3 = x+;y. There exist in a distinct points p and q whose 
images are the endpoints of T(a). (In case T(a) is degenerate these 
points may be x and y.) Let the points be so named that a = xp+pq 
+qy, where any two of the arcs on the right have at most a common 
endpoint. Now the endpoints of T{a) lie in its subarcs T(xp) and 
T(qy)y which have a common point. Consequently, T(xp-\-qy) 
= T(xp)-\-T(qy) = T(a). Thus the arc y = px-{-fi + qy is such that 
T(y) = / ' , contrary to the hypothesis that J' is not an arc. 

(3.3) If T(A)—B is arc-preserving, where A is cyclic, and if there 
exists a simple closed curve J in A such that T(J)—Jf is not an arc, 
then T is one-to-one on A. 

PROOF. Since J' is not an arc, it follows from (3.2) that T(J)=J' 
is topological. Let z be any point of / and suppose ZT£T~XT(Z). Then 
there exists a point Z\ in A — J such that T(z\) = T(z). Let czxd be an 
arc in A spanning6 / , and suppose d^z. Write J as the sum of two 
simple arcs a and j3 having precisely the points z and d in common. 

6 An arc axb is said to span a point set M provided M-axb — a-\-b. 
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Now T(z) = T(zx) and T is topological on a. Consequently, since 
T(zid+a) is an arc, we have T(z\d) contains T{a). Therefore, 
T(zid+I3) contains J ' , contrary to the fact that J' is not an arc. Hence 
for every point z of J we have z = T~lT(z). 

Now let s be a point of A —J and let a be an arc through z spanning 
J and dividing / into two arcs j8 and 7. From the above and (3.2) it 
follows that r (a+j3) is a simple closed curve. Consequently, 
z = T~lT(z) and, therefore, T is one-to-one on A. 

(3.4) Under the hypotheses of (S.3) either of the following conditions 
suffices to make T topological: (a) A is strongly arcwise connected, or 
(b) T sends trees into compact sets. 

PROOF. That (a) suffices is immediate from (2.5). To show that (b) 
suffices we need only establish the continuity of T. Assume T is not 
continuous. Then there exists a sequence of points {xn} converging 
to a point x of A such that either the sequence T(xn) =Xn converges 
to a point y'5*T(x) or the set T(xn) has no limit point. Now there 
exists a tree / containing infinitely many of the xn, but not y — T~l(y') 
if y' exists. It follows in either case that T(t) is not compact.7 This 
contradiction completes the proof. 

(3.5) Let J be any simple closed curve in the cyclic continuum A and 
let T(A)—B be arc-preserving but not topological. Then either of the 
following conditions suffices to make T(J) =J' a free arc1 of B : (a) A is 
strongly arcwise connected, or (b) the image of each tree in A is a locally 
connected continuum. 

PROOF. From (3.2) we see that T(J)=J' is topological or / ' is an 
arc. If T(J)=J' is topological, then by (3.4) we see that T{A)—B 
is topological and the theorem is established. Hence assume that J' 
is an arc a'x'b' of B which is not a free arc of B. To obtain the desired 
contradiction we first establish the following assertion : 

(i) There exists an arc uv in A such that T(uv) contains a nondegen-
erate subarc u'v' having exactly the point v' in common with J'', where v' 
is an interior point of the arc J'. 

To prove (i) we observe that since J' is not a free arc of B there 
must exist a sequence of points xl oiB — J' converging to an interior 
point x' of J'. If A is strongly arcwise connected there exists an arc N 
in A intersecting infinitely many of the sets T~l(xn). Then T(N) con­
tains a nondegenerate subarc u'v' satisfying the conditions of (i) and 

An arc a is a free arc of M provided a spans M—a. 
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we immediately obtain the arc uv as a subarc of N joining a point of 
T~l(u') to a point of T~1{v'). This proves (i) under our first hypothe­
sis. Assume next that (b) holds. Then there exists a tree / in A inter­
secting T~~l(x') and infinitely many of the sets T~l(xn). Thus T(t) 
is a locally connected continuum in B containing x' and infinitely 
many of the points xl. Hence T(t) is locally arcwise connected and 
thus contains an arc u'v' satisfying (i). The arc uv is then obtained 
as any arc in / joining a point of T~l(u') to a point of T~~l(v'). This 
completes the proof of (i). 

Now since A is cyclic there exists an arc H in A intersecting T~l(u') 
and having its endpoints in T~l(af) and T~l(bf). It follows at once 
from (3.1) that T(H) contains J'. Now T(H) contains both u' and v' 
and hence a subarc joining these points. Since T(H) is an arc, this 
subarc must contain either a' or b', hence we assume that it contains 
a' and denote it by u'a'v'. From (3.1) it follows that if M is any arc 
in A having its endpoints in T~l(u') and T~l(v') then T(M) contains 
u'a'v''. But this tells us at once that the image of the arc uv given by 
(i) must contain a simple closed curve. This contradiction completes 
the proof. 

4. Principal theorem. We shall now prove our principal theorem. 

(4.1) Let T(A) = B be arc-preserving, where A is a cyclic locally con­
nected continuum and B is not an arc. Then T is topological if either 
A is strongly arcwise connected or T is tree-preserving. 

PROOF. Assume T is not topological. Then by (3.5) the image of 
every simple closed curve J oi A is a free arc of B and, consequently, 
every two points of B lie on a free arc of B. Thus to show that B is a 
simple closed curve it is certainly sufficient to show that B is a locally 
connected continuum. This follows at once from (2.1) and (2.4) if A 
is strongly arcwise connected. Hence we need only establish it in the 
case where T is tree-preserving. That B is compact follows at once 
from this condition since every convergent sequence of points in A 
lies on a tree in A and the image of this tree is a tree. Assuming B 
not locally connected we can find two points a and b in B a t which B 
fails to be locally connected. Let axb be a free arc in B and d a point 
of B not on this free arc. Then there exists a free arc dx in B where 
x is an interior point of axb. Thus either a or b is interior to the free 
arc dx of B which is impossible since B is not locally connected at 
either a or b. Hence we have established the fact that under either of 
our hypotheses B must be a simple closed curve. 

We show first that if z' is any point of B there exists an arc j8 of A 
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such that z' is an interior point of T(/3). Since B is a simple closed 
curve, it contains an arc p'z'q' having z' as an interior point. Let 
{pn } be a sequence of points in the arc p'z' converging monotonically 
to z'. Let / be a tree in A intersecting infinitely many of the sets 
T~l{pn). If T is tree-preserving then T(t) is an arc / ' '=a'b'. There 
exists in t an arc a intersecting both T~l(a') and T~l(b'). Since 
T(a) = t', it follows that T(pt) must contain a subarc yp — z'xr of z!p'. 
If A is strongly arcwise connected the same result may be obtained by 
taking a as an arc in A which intersects infinitely many of the sets 
T~l(pn). Likewise we obtain an arc yq = zfy' which is a subarc of both 
z'q1 and the image of an arc of A. Let /3 be an arc in A intersecting 
T-\x'), T~l(y'), and T~\z'). By virtue of (3.1), r(/3) contains 
7 P + 7 Q , an arc which has z' as an interior point. 

It follows from the above and the Heine-Borel theorem that there 
exists a finite number of arcs a\, a2, • • • , an (n^2) in A such that 
23>ir(a») =^2a{ — B. Moreover, the oti may be so selected and named 
that ai • ai is empty except for k=i — \,i, i-\-l (w + 1 = 1). Let pi and 
qi be the endpoints of ai, and assume them so named that pi+i is a 
point of ai while qi+i is not. Select in A an arc fii = piqi+qiq2l where 
the points pi, qly and q2 are in T~1{p()1 T~l(q{), and T~l(q{) respec­
tively. By (3.1), T(piqï) contains a{, and consequently a point p2 of 
T~l(pi). The subarc p2q2 of /Si has an image which contains a2', by 
(3.1). Therefore T(fii) contains a{ +a2 . To complete the induction 
assume that an arc ]8r has been obtained in 4̂ such that T(J3r) contains 
a{ +a2 + • • • +ce/+i- Select in A an arc fir+i = piqr+i-\-qr+iqr+2, where 
the points ph qr+i, and qr+2 are in T~l(pi), T~*(qr+i), and T~1(qr+2) re­
spectively. By applying (3.1) as above it follows that T(piqr+i) contains 
ai+ - - - +a r+i, and, finally, that T(J3r+i) contains « ! + • • • +a r +2. 
Therefore, by induction, there exists an arc j3n_i in 4̂ such that 
T(J3n-i)=B, which, as a consequence of our supposition, is a simple 
closed curve. This contradiction completes the proof of the theorem. 

(4.11) COROLLARY. Let A be a locally connected continuum having no 
local separating points. If T(A)—B is arc-preserving, then either B is 
an arc or T is topological. 

PROOF. Since A has no local separating point it can contain no cut 
point. Moreover, A is strongly arcwise connected, since every closed 
and totally disconnected set of A is contained in an arc.8 Conse­
quently, A satisfies the hypotheses of (4.1). 

8 See G. T. Whyburn, On disconnected sets, Fundamenta Mathematicae, vol. 18 
(1931), pp. 48-60. 
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The following theorem is an immediate consequence of (4.1) and 
(2.6): 

(4.2) The class of cyclic strongly arcwise connected continua consists 
exactly of all cyclic locally connected continua A such that every arc-
preserving transformation T(A) =B, where B is not an arc, is topological. 
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A NOTE ON SUBGEOMETRIES OF PROJECTIVE 
GEOMETRY AS THE THEORIES OF TENSORS1 

T. L. WADE 

Klein's viewpoint (A) of a geometry as the invariant theory of a 
transformation group, as formulated in the Erlanger Programm in 
1870,2 has played an important part in the study of geometry during 
the past half century. A number of explicit utilizations of this view­
point in invariant aspects of algebraic geometry have been made.3 

In the last decade the viewpoint (B) of a geometry as the theory of 
a tensor has received considerable theoretical discussion and utiliza­
tion in connection with the new differential geometries.4 While the 
adjunction argument, whereby subgeometries of projective geometry 
result from the latter by holding certain forms latent, has had consid­
erable use,5 and is closely related to tensor algebra, there seems to 
have been no explicit treatment of algebraic invariants for subgeome­
tries of projective geometry from the viewpoint (B) with the use of 
tensor algebra. To indicate how this might be done is the purpose 
of this paper. The material here is largely an application and contin­
uation of the basic paper by Cramlet.6 

1 Presented to the Society, April 27, 1940. 
2 F . Klein, Gesammelte Mathematische Abhandlungen, Berlin, 1921, vol. 1, p. 460. 
3 C. C. MacDuffee, Euclidean invariants of second degree curves, American Mathe­

matical Monthly, vol. 33 (1926), pp. 243-252; Covariants of r-parameter groups, 
Transactions of this Society, vol. 39 (1933). 

4 J. A. Schouten and J. Haantjes, On the theory of the geometric object, Proceedings 
of the London Mathematical Society, vol. 42 (1937), pp. 356-376. 

5 H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton 
University Press, 1939, pp. 254-258; H. W. Turnbull, The Theory of Determinants, 
Matrices, and Invariants, Blackie and Son, 1929, chap. 21. 

6 C. M. Cramlet, The derivation of algebraic invariants by tensor algebra, this Bulle­
tin, vol. 34 (1928), pp. 334-342. 


